Master's Thesis Presentation On the Properties of S-boxes

Léo Perrin (perrin.leo@gmail.com)
Supervisor: Céline Blondeau
Department of Information and Computer Science
Aalto University, School of Science and Technology
March 18, 2013

Table of contents

Cryptographic Background
Differential Spectrum
The Exponent Family $2^{t}-1$

The Case $t=(k n+1) / 3$
The Case $t=(n-1) / 2$

Observations

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^{t}-1$

The Case $t=(k n+1) / 3$

The Case $t=(n-1) / 2$

Observations

Purpose of Cryptography

- Use of electronic communications is huge.
- HTTP
- Mail
- Cloud computing
- Communication through unsecure channel requires protection.
- Electronic data must be protected too.
- Thumb drive
- Computer HDD

Cryptographic Primitives

Protection: cryptographic primitives

- Read only by the recipient: Ciphers.
- No tampering: Hash functions, MAC.
- Authentication: Electronic Signatures.

Asymmetric vs. Symmetric
Today: Symmetric cryptography.

Block Cipher

Claude Shannon's construction (ciphers): multiple iteration of confusion and diffusion.

Diffusion Small modification in input \Longrightarrow Great modification in output.
Confusion No simple relation between input and output.

Substitution-Permutation Network

Attack Models

Attack (Cryptanalysis) The action of trying to extract useful data from a ciphertext without any previous knowledge of the key.

Chosen plaintext attack The attacker has a black-box cipher + key and can encrypt any plaintext with it.

Statistical attack Uses the fact that the distribution of ciphertext has some statistical bias.

Differential Cryptanalysis (1/2)

Differential cryptanalysis relies on the existence of (a, b) such that $E_{k}(x+a)+E_{k}(x)=b$ for many plaintexts x.

Differential Cryptanalysis (2/2)

Idea: look at pairs (a, b) called differentials that have a high probability for a fixed k.

Definition (Propagation ratio)

$$
\begin{aligned}
R_{p}(a, b) & =\operatorname{Pr}\left[E_{k}(x+a)+E_{k}(x)=b\right] \\
& =\frac{\delta(a, b)}{2^{n}}
\end{aligned}
$$

where $\delta(a, b)$ is the number of plaintexts x such that $E_{k}(x+a)+E_{k}(x)=b$

S-boxes

S-boxes are key components of most ciphers (SPN and Feistel).

- $S:\{0,1\}^{n} \mapsto\{0,1\}^{m}$
- S-boxes should be non-linear (confusion).
- Monomials ($x \mapsto x^{d}$) imply "easy" study and "easy" hardware implementation.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^{t}-1$

The Case $t=(k n+1) / 3$

The Case $t=(n-1) / 2$

Observations

Math Reminder and Notations (1/2)

- $\mathbb{F}_{2^{n}}$ is the field of characteristic 2 of size 2^{n}.
- Frobenius automorphism:

$$
(a+b)^{2^{i}}=a^{2^{i}}+b^{2^{i}}
$$

- The absolute trace over $\mathbb{F}_{2^{n}}$ is:

$$
\operatorname{Tr}(x)=\sum_{i=0}^{n-1} x^{2^{i}}, \operatorname{Tr}(x) \in\{0,1\}
$$

Math Reminder and Notations (2/2)

- We denote:
- $\mathcal{F}=\mathbb{F}_{2^{n}} \backslash\{0,1\}$
- and $\mathcal{F}_{c}=\{x \in \mathcal{F}, \operatorname{Tr}(x)=c\}$
- The derivative of $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{m}}$ with respect to $a \in \mathbb{F}_{2^{n}}^{*}$ is:

$$
\mathbb{D}_{a} F(x)=F(x+a)+F(x)
$$

Differential Uniformity

Resistance against differential cryptanalysis depends on the differential uniformity (introduced by Nyberg):
Let $F: \mathbb{F}_{2^{n}} \mapsto \mathbb{F}_{2^{m}}$. Then:

$$
\delta(a, b)=\left|\left\{x \in \mathbb{F}_{2^{n}}, \mathbb{D}_{a} F(x)=b\right\}\right|
$$

Definition

The differential uniformity of F is $u(F)$ with:

$$
u(F)=\max _{a \neq 0, b \in \mathbb{F}_{2^{n}}} \delta(a, b)
$$

Functions F such that $u(F)=2$ are called Almost-Perfect Non-linear (APN).

Differential Spectrum

For monomials, studying $\delta(1, b)$ is enough:

$$
(x+a)^{d}+x^{d}=b \Leftrightarrow a^{d}\left(\left(\frac{x}{a}+1\right)^{d}+\left(\frac{x}{a}\right)^{d}\right)=b
$$

Let $\delta(b)=\delta(1, b)$.

Definition
Let $\omega_{i}=\left|\left\{b \in \mathbb{F}_{2^{n}}, \delta(b)=i\right\}\right|$. The differential spectrum of a monomial F is:

$$
\mathbb{S}=\left\{\omega_{0}, \omega_{2}, \ldots, \omega_{u(F)}\right\}
$$

Cryptographic Relevance of the Spectrum

Studied differential:
 $((0,1,0,1),(0,1,0,1))$.

$$
\begin{aligned}
& \operatorname{Pr}[(a, b)] \\
& =\sum_{b \in \mathbb{F}_{2^{n}}} \operatorname{Pr}[S: 1 \mapsto b]^{2}
\end{aligned}
$$

$$
=\frac{1}{2^{2 n}} \sum_{k=0}^{u(S)} \omega_{k} \cdot k^{2}
$$

$$
=\frac{\ell_{S}}{2^{2 n}}
$$

Influence of the Differential Spectrum

$u\left(F_{d}\right)$	d	Differential Spectrum of F_{d}	$\ell_{F_{d}}$
	511	$\omega_{0}=513, \omega_{2}=510, \omega_{4}=1$	2056
	84	$\omega_{0}=572, \omega_{2}=392, \omega_{4}=60$	2528
	103	$\omega_{0}=588, \omega_{2}=360, \omega_{4}=76$	2656
	87	$\omega_{0}=632, \omega_{2}=272, \omega_{4}=120$	3008
	160	$\omega_{0}=768, \omega_{2}=0, \omega_{4}=256$	4096
6	147	$\omega_{0}=597, \omega_{2}=347, \omega_{4}=75, \omega_{6}=5$	2768
	122	$\omega_{0}=608, \omega_{2}=330, \omega_{4}=76, \omega_{6}=10$	2896
	152	$\omega_{0}=628, \omega_{2}=300, \omega_{4}=76, \omega_{6}=20$	3136
	118	$\omega_{0}=623, \omega_{2}=315, \omega_{4}=61, \omega_{6}=25$	3136
	7	$\omega_{0}=583, \omega_{\mathbf{2}}=405, \omega_{\mathbf{4}}=\mathbf{1}, \omega_{6}=35$	2896
	54	$\omega_{0}=667, \omega_{2}=242, \omega_{4}=75, \omega_{6}=40$	3608
	167	$\omega_{0}=688, \omega_{2}=210, \omega_{4}=76, \omega_{6}=50$	3856

Properties of the Differential Spectrum

$\mathbb{S}=\left\{\omega_{0}, \omega_{2}, \ldots, \omega_{\delta(F)}\right\}:$ differential spectrum of a monomial F.

$$
\sum_{i=0}^{\delta(F)} \omega_{i}=2^{n}, \quad \sum_{i=0}^{\delta(F)} i \cdot \omega_{i}=2^{n}
$$

Lemma
If $e \equiv 2^{k} \cdot d \bmod \left(2^{n}-1\right)$ or if $e \equiv d^{-1} \bmod \left(2^{n}-1\right)$ then F_{e} has the same spectrum as F_{d}.

Theorem
Let $G_{t}(x)=x^{2^{t}-1}$ and $s=n-t+1$. Then G_{t} and G_{s} have the same restricted differential spectrum.

Differential Spectra of $x \mapsto x^{2^{t}-1}$ for $n=14$

t	$\delta(0), \delta(1)$	restricted spectrum
2	2,2	$0[8192] 2[8190]$
3	0,4	$0[9578] 2[6111] 6[693]$
4	2,2	$0[9548] 2[6216] 6[588] 14[30]$
5	0,4	$0[9578] 2[6111] 6[693]$
6	2,2	$0[9548] 2[6216] 6[588] 14[30]$
7	126,4	$0[8255] 2[8127]$
8	2,128	$0[8255] 2[8127]$
9	0,4	$0[9548] 2[6216] 6[588] 14[30]$
10	2,2	$0[9578] 2[6111] 6[693]$
11	0,4	$0[9548] 2[6216] 6[588] 14[30]$
12	2,2	$0[9578] 2[6111] 6[693]$
13	0,4	$0[8192] 2[8190]$

On the 2,4 Differentially Uniform Functions

Differentially 2 and 4-uniform monomials are well known.

name	exponent
quadratic	$2^{t}+1$
Kasami	$2^{2 t}-2^{t}+1$
Bracken-Leander	$2^{2 t}+2^{t}+1$
Inverse	$2^{n-1}-1$

Conjecture: All differentially 4-uniform are in this table.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^{t}-1$

The Case $t=(k n+1) / 3$

The Case $t=(n-1) / 2$

Observations

Kloosterman's Sum

It is denoted $K(1)$:

$$
\begin{aligned}
K(1) & =\sum_{x \in \mathbb{F}^{2 n}}(-1)^{\operatorname{Tr}\left(x+x^{-1}\right)} \\
& =2^{n}-\left|\left\{x \in \mathbb{F}_{2^{n}}, \operatorname{Tr}\left(x+x^{-1}\right)=1\right\}\right| \\
& =1+\frac{(-1)^{n-1}}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{i}\binom{n}{2 i} 7^{i},
\end{aligned}
$$

with $(-1)^{\operatorname{Tr}\left(x^{-1}\right)}=1$ when $x=0$.

Differential Spectrum of $x \mapsto x^{7}$

Blondeau, Canteaut and Charpin (BCC11): the spectrum of $x \mapsto x^{7}$ (and of $x \mapsto x^{2^{n-2}-1}$) is:

- If n is odd, then:

$$
\begin{aligned}
& \omega_{6}=\frac{2^{n-2}+1}{6}-\frac{K(1)}{8}, \omega_{4}=0 \\
& \omega_{2}=2^{n-1}-3 \omega_{6}, \omega_{0}=2^{n-1}+2 \omega_{6}+1
\end{aligned}
$$

- If n is even, then:

$$
\begin{aligned}
& \omega_{6}=\frac{2^{n-2}-4}{6}+\frac{K(1)}{8}, \omega_{4}=1 \\
& \omega_{2}=2^{n-1}-3 \omega_{6}-2, \omega_{0}=2^{n-1}+2 \omega_{6}+1
\end{aligned}
$$

Blondeau's Conjectures

Conjecture 8.9. La fonction $G_{t}(x)=x^{2^{t}-1}$ avec $t=(n-1) / 2$ a le même spectre différentiel que la fonction $G_{3}=x^{7}$.

Conjecture 8.10. Soient n et k tel que $n \equiv k \bmod 3$ et $k=1$ ou 2 alors le spectre différentiel privé de $\delta(0)$ et $\delta(1)$ de $G_{\frac{n+k}{3}}$ est le même que celui de $G_{3}(x)=x^{7}$.

Conjecture
$G_{t}(x)=x^{2^{t}-1}$ with $t=(n-1) / 2$ has the same spectrum as $G_{3}(x)=x^{7}$.

Conjecture
Let n and k be such that $n \equiv k \bmod (3)$ and $k=1$ or 2 ; then the differential spectrum minus $\delta(0)$ and $\delta(1)$ of $G_{(n+k) / 3}$ is the same as that of $G_{3}(x)=x^{7}$.

Outline of the Proof in BCC11

1. $\delta(0)$ and $\delta(1)$ are computed independently.
2. Re-write $(x+1)^{7}+x^{7}=b$:

$$
\left\{\begin{array}{l}
\ell_{\beta}(y)=0 \\
\operatorname{Tr}(y)=0,
\end{array} \quad \ell_{\beta}=y^{3}+y+\beta .\right.
$$

3. Aim: to compute $\omega_{0}=\#\{\beta \mid$ system has no solution $\}$.

- A theorem gives the number of roots of ℓ_{β} depending on β.
- Explain why when ℓ_{β} has 3 roots, exactly 1 or 3 satisfy the trace condition.
- Use Kloosterman's sum $K(1)$ when ℓ_{β} has 1 root.

4. Compute the rest of the spectrum using $\sum \omega_{i}=2^{n}$ and $\sum i \cdot \omega_{i}=2^{n}$.

Outline of our PROOFS

1. $\delta(0)$ and $\delta(1)$ are computed independently.
2. Re-write $(x+1)^{2^{t}-1}+x^{2^{t}-1}=b$:

$$
\left\{\begin{array}{c}
\mathcal{L}_{\beta}(v)=0 \\
\operatorname{Tr}\left(v^{q}\right)=c,
\end{array} \quad \mathcal{L}_{\beta}(v)=v^{2^{t}+1}+v+\beta\right.
$$

3. Aim: to compute $\omega_{0}=\#\{\beta \mid$ system has no solution $\}$.

- Use a theorem to find number of roots of \mathcal{L}_{β}.
- Explain why when \mathcal{L}_{β} has 3 roots, exactly 1 or 3 satisfy the trace condition.
- Involve the Kloosterman's sum $K(1)$ when \mathcal{L}_{β} has 1 root.

4. Compute the rest of the spectrum using $\sum \omega_{i}=2^{n}$ and $\sum i \cdot \omega_{i}=2^{n}$.

Same structure as in BCC11...

But!

$t=3 \Longrightarrow$ small and constant degree of the polynomial $\left(\ell_{\beta} \mathrm{vs}\right.$. \mathcal{L}_{β}). Here...

No.

More complicated. Lots of non-trivial computations not shown here.

Theorem 1 of Helleseth and Kholosha's Paper (08)

We define polynomial \mathcal{L}_{a} by

$$
\mathcal{L}_{a}(x)=x^{2^{t}+1}+x+a .
$$

- Let $t \leq n$ and $\operatorname{gcd}(t, n)=1$. For any $a \in \mathbb{F}_{2^{n}}^{*}, \mathcal{L}_{a}$ has either 0,1 or 3 roots in $\mathbb{F}_{2^{n}}$.
- \mathcal{L}_{a} has exactly one root $x_{0} \in \mathbb{F}_{2}^{*}$ if and only if $\operatorname{Tr}\left(\left(1+x_{0}^{-1}\right)^{\tau}\right)=1$ where $\tau \equiv\left(2^{t}-1\right)^{-1} \bmod \left(2^{n}-1\right)$.
- Let $M_{i}=\#\left\{\mathbf{a} \in \mathbb{F}_{2^{n}}^{*}, \mathcal{L}_{a}\right.$ has i roots $\}$.

For n odd, $\quad M_{0}=\frac{2^{n}+1}{3}, \quad M_{1}=2^{n-1}-1, \quad M_{3}=\frac{2^{n-1}-1}{3}$.
For n even, $\quad M_{0}=\frac{2^{n}-1}{3}, \quad M_{1}=2^{n-1}, \quad M_{3}=\frac{2^{n-1}-2}{3}$.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^{t}-1$

The Case $t=(k n+1) / 3$

The Case $t=(n-1) / 2$

Observations

$t=(k n+1 / 3)$

Wanted to study $t=(n+k) / 3$, but...

- If $k=1, t=(n+1) / 3$.
- If $k=2, s=(2 n+1) / 3,(s=n-t+1)$.
- $2^{(k n+1) / 3}-1$ is invertible modulo $2^{n}-1$.

We studied $t=(k n+1) / 3$ with $2 \equiv n / k \bmod 3$ instead.

Base Problem

BCC11: the number of solutions of $(x+1)^{2^{t}-1}+x^{2^{t}-1}=b$ is the number of roots of

$$
P_{b}(x)=x^{2^{t}}+b x^{2}+(b+1) x
$$

and half that of

$$
\left\{\begin{array}{c}
Q_{b}(y)=b y \\
\operatorname{Tr}(y)=0
\end{array}, Q_{b}(y)=\sum_{i=0}^{t-1} y^{2^{i}} .\right.
$$

Rewriting the Problem (1/3)

An interesting observation:

$$
\begin{aligned}
& Q_{b}(y)^{2^{t}}=\sum_{i=0}^{t-1} y^{2^{i+t}}=\sum_{i=t}^{2 t-1} y^{2^{i}} \\
& Q_{b}(y)^{2^{2 t}}=\sum_{i=0}^{t-1} y^{2^{i+2 t}}=\sum_{i=2 t}^{3 t-1} y^{2^{i}}
\end{aligned}
$$

Where $3 t-1=(k n+1)-1$. Thus:

$$
Q_{b}(y)+Q_{b}(y)^{2^{t}}+Q_{b}(y)^{2^{2 t}}=k \cdot \operatorname{Tr}(y)+y^{2^{k n}}=y
$$

Rewriting the Problem (2/3)

Furthermore:

$$
L_{1}(u)=u+u^{2^{t}}+u^{2^{2 t}}
$$

has a unique root, 0 .
We deduce that $Q_{b}(y)+b y=0$ and $\operatorname{Tr}(y)=0$ is equivalent to:

$$
\left\{\begin{array}{l}
Q_{b}(y)+b y+\left(Q_{b}(y)+b y\right)^{2^{t}}+\left(Q_{b}(y)+b y\right)^{2^{2 t}}=0 \\
\operatorname{Tr}(y)=0
\end{array}\right.
$$

Rewriting the Problem (3/3)

Thus, if we let $z=b y$ and $\beta=1+b^{-1}$:

$$
\left\{\begin{array}{l}
z^{2^{2 t}}+z^{2^{t}}+\beta z=0 \\
\operatorname{Tr}(z)=0
\end{array}\right.
$$

At last, let $v=z^{2^{t}-1}$ and $\tau=\left(2^{t}-1\right)^{-1} \bmod \left(2^{n}-1\right)$:
Theorem
The differential spectrum of G_{t} for $t=(k n+1) / 3$ is given by the number of solutions of the following system:

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(v)=v^{2^{t}+1}+v+\beta=0 \\
\operatorname{Tr}\left(v^{\tau}\right)=0
\end{array}\right.
$$

Counting Solutions (1/2)

We want to know when the system has no solutions. We know that:

- $\mathcal{L}_{\beta}(v)=0$ has 0,1 or 3 solutions.
- If v_{1}, v_{2}, v_{3} are solutions, then $v_{1}^{\tau}, v_{2}^{\tau}$ and v_{3}^{τ} are solutions of a linear polynomial, so $v_{1}^{\tau}+v_{2}^{\tau}+v_{3}^{\tau}=0$. Thus, either

$$
\operatorname{Tr}\left(v_{1}^{\tau}\right)=\operatorname{Tr}\left(v_{2}^{\tau}\right)=\operatorname{Tr}\left(v_{3}^{\tau}\right)=0
$$

or

$$
\operatorname{Tr}\left(v_{1}^{\tau}\right)=\operatorname{Tr}\left(v_{2}^{\tau}\right)=1, \operatorname{Tr}\left(v_{3}^{\tau}\right)=0
$$

So exactly 1 or 3 satisfy the trace condition.

Counting Solutions (2/2)

- $\mathcal{L}_{\beta}(v)=0$ has no solutions in $M_{0}=\frac{2^{n}-(-1)^{n}}{3}$ cases.
- $\mathcal{L}_{\beta}(v)=0$ has a unique solution v_{0} if and only if $\operatorname{Tr}\left(\left(1+v_{0}^{-1}\right)^{\tau}\right)=1$.

Let \mathcal{B}_{1} be defined by:

$$
\mathcal{B}_{1}=\left\{v \in \mathcal{F}, \operatorname{Tr}\left(v^{\tau}\right) \neq 0, \operatorname{Tr}\left(\left(1+v^{-1}\right)^{\tau}\right)=1\right\}
$$

then the ω_{0} is:

$$
\omega_{0}=\frac{2^{n}-(-1)^{n}}{3}+\left|\mathcal{B}_{1}\right|
$$

and so:

$$
\omega_{0}=\frac{2^{n}-(-1)^{n}}{3}+2^{n-2}+(-1)^{n} \frac{K(1)}{4}
$$

Conclusion for $t=(k n+1) / 3$

Theorem

Let $t=\frac{k n+1}{3}$ and $k=1$ or 2 such that $k n \equiv-1 \bmod 3 . G_{t}$ is differentially 6 -uniform. Its differential spectrum is:

$$
\begin{aligned}
& \text { if } n \equiv \pm 1 \bmod 6, \quad \omega_{6}=\frac{2^{n-2}+1}{6}-\frac{K(1)}{8}, \quad \omega_{4}=0, \\
& \text { if } n \equiv \pm 2 \bmod 6, \quad \omega_{6}=\frac{2^{n-2}-4}{6}+\frac{K(1)}{8}, \quad \omega_{4}=1 \text {, } \\
& \omega_{2}=2^{n-1}-3 \omega_{6}-2 \omega_{4} \text { and } \omega_{0}=2^{n-1}+2 \omega_{6}+\omega_{4} .
\end{aligned}
$$

CQFD.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^{t}-1$

The Case $t=(k n+1) / 3$

The Case $t=(n-1) / 2$

Observations

A New Approach

- Study $t=(n-1) / 2$ for odd n.
- $x \mapsto x^{2^{t}-1}$ is a permutation and $\tau=\left(2^{t}-1\right)^{-1} \equiv-2-2^{t+1}$ $\bmod \left(2^{n}-1\right)$.
- $3 \times \frac{n-1}{2} \not \equiv 1 \bmod n$, so we can't do as before...

Idea!

Lemma (from BCC11)

The differential spectrum of a function is the same as that of its inverse.

A New Equation...

Number of solutions of:

$$
(x+1)^{\tau}+x^{\tau}=b
$$

After computations, this equation is equivalent to:

$$
c\left(x^{2}+x\right)^{2^{t}+1}+x^{2^{t}}+x+1=0
$$

where $c=b^{2^{n-1}}$.
Let $y=x+x^{2}$:

$$
A(y)=c y^{2^{t}+1}+\sum_{i=0}^{t-1} y^{2^{i}}+1=0
$$

... And a New System

This system has half as many solutions as $(x+1)^{\tau}+x^{\tau}=b$.

$$
\left\{\begin{array}{l}
A(y)=c y^{2^{t}+1}+\sum_{i=0}^{t-1} y^{2^{i}}+1=0 \\
\operatorname{Tr}(y)=0
\end{array}\right.
$$

Sort of ugly...

But!

$$
A(y)+A(y)^{2^{t+1}}=\operatorname{Tr}(y)+y^{2^{t}}\left(c^{2^{t+1}} y^{2^{t}+1}+c y+1\right)
$$

This system has exactly the same solutions as:

$$
\left\{\begin{array}{l}
c^{2^{t+1}} y^{2^{t}+1}+c y+1=0 \\
\operatorname{Tr}\left(c y^{2^{t}+1}\right)=1
\end{array}\right.
$$

Obtaining the Base System

Let $v=y c^{2-2^{t+1}}$. Then the previous system becomes:

$$
\left\{\begin{array}{l}
\mathcal{L}_{\beta}(v)=v^{2^{t}+1}+v+\beta=0 \\
\operatorname{Tr}(v)=1+\operatorname{Tr}(\beta)
\end{array}\right.
$$

where $\operatorname{Tr}(v)=1+\operatorname{Tr}(\beta)$ is the same as $\operatorname{Tr}\left(v^{2^{t}+1}\right)=1$.

Good...

But not a great trace condition.
\Longrightarrow We need another idea

An Expression of Triple Solutions

Lemma
Define $\wedge: \mathcal{F}_{0} \rightarrow \mathcal{F}$ by

$$
\Lambda(\ell)=\sum_{i=1}^{t} \ell^{2^{i}-1}
$$

Then:

$$
\left\{x \mid \mathcal{L}_{\beta}(x)=0 \text { and } \mathcal{L}_{\beta} \text { has } 3 \text { roots }\right\}=\operatorname{Im}_{\wedge}\left(\mathcal{F}_{0}\right)
$$

- Λ is an injection over \mathcal{F}_{0}.
- So is $/ \mapsto 1 / \Lambda(I)$.
- It holds that $\operatorname{Im}_{\wedge}\left(\mathcal{F}_{0}\right) \cap \operatorname{Im}_{1 / \Lambda}\left(\mathcal{F}_{0}\right)=\emptyset$.

An Expression of Unique Solutions

Every $x \in \mathbb{F}_{2^{n}}$ is a root of some \mathcal{L}_{β} having exactly 1 or 3 roots. There is $2^{n-1}-1$ of each (Theorem 1):

Roots of \mathcal{L}_{β}
(\mathcal{L}_{β} has 3 roots)

Roots of \mathcal{L}_{β}
(\mathcal{L}_{β} has 1 roots)
$\left\{x \mid x\right.$ is the unique root of $\left.\mathcal{L}_{\beta}\right\}=\operatorname{Im}_{1 / \Lambda}\left(\mathcal{F}_{0}\right)$

Counting Solutions (1/2)

We want now to compute ω_{0} using the expressions we found.

- $\mathcal{L}_{\beta}(v)=0$ has 0,1 or 3 solutions.
- If v_{1}, v_{2}, v_{3} are solutions, then they yield:
- $v_{3}^{\tau}=v_{1}^{\tau}+v_{2}^{\tau}$.
- $v_{1}^{-1}+v_{2}^{-1}+v_{3}^{-1}=1$.
\Longrightarrow Exactly one or three satisfy the trace condition.

Counting Solutions (2/2)

- $\mathcal{L}_{\beta}(v)=0$ has no solutions in $M_{0}=\frac{2^{n}-(-1)^{n}}{3}$ cases.
- $\mathcal{L}_{\beta}(v)=0$ has a unique solution v_{0} if and only if there is $I \in \mathcal{F}_{0}$ such that $v_{0}=1 / \Lambda(I)$.

Let \mathcal{B}_{1} be defined by:

$$
\mathcal{B}_{1}=\left\{v \in \mathcal{F}, \operatorname{Tr}\left(v^{2^{t}+1}\right) \neq 1, \exists l \in \mathcal{F}_{0}, v=1 / \Lambda(I)\right\}
$$

then ω_{0} is:

$$
\frac{2^{n}-1}{3}+\left|\mathcal{B}_{1}\right|
$$

Again: $\left|\mathcal{B}_{1}\right|=2^{n-2}+(-1)^{n} K(1) / 4$.

Conclusion for $t=(n-1) / 2$

We obtain (almost) the same result!

Theorem

Let n odd and $t=(n-1) / 2$. The functions G_{t} is locally differentially 6-uniform. Its differential spectrum is:

$$
\begin{gathered}
\text { if } n \equiv \pm 1 \bmod 6, \quad \omega_{8}=0, \quad \omega_{6}=\frac{2^{n-2}+1}{6}-\frac{K(1)}{8}, \\
\text { if } n \equiv 3 \bmod 6, \quad \omega_{8}=1, \quad \omega_{6}=\frac{2^{n-2}-8}{6}-\frac{K(1)}{8}, \\
\omega_{4}=0, \omega_{2}=2^{n-1}-3 \omega_{6}-4 \omega_{8} \text { and } \omega_{0}=2^{n-1}+2 \omega_{6}+3 \omega_{8} .
\end{gathered}
$$

CQFD.

Table of Contents

Cryptographic Background
Differential Spectrum
The Exponent Family $2^{t}-1$The Case $t=(k n+1) / 3$

Observations

Dickson Polynomials (1/2)

Dickson polynomials $D_{n}(x, y)$:

$$
D_{n}(x+y, x y)=x^{n}+y^{n}
$$

Definition of differential spectrum: number of roots of

$$
\begin{aligned}
& (x+1)^{d}+x^{d}=b \\
& \Leftrightarrow D_{n}\left(1, x^{2}+x\right)=b
\end{aligned}
$$

Hou. et al. (2009) introduced reversed Dickson polynomial

$$
R D_{d}(y)=D_{d}(1, y)
$$

Dickson Polynomials (2/2)

Equivalent definition of the differential spectrum:

$$
\omega_{2 k}=\mid\left\{b \in \mathbb{F}_{2^{n}}, R D_{d}(y)=b \text { has } k \text { solutions in } \mathcal{F}_{0}\right\} \mid
$$

Recall result from BCC11: for $d=2^{t}-1$,

$$
\omega_{2 k}=\mid\left\{b \in \mathbb{F}_{2^{n}}, \quad \sum_{i=0}^{t-1} y^{2^{i}}=\text { by has } k \text { solutions in } \mathcal{F}_{0}\right\} \mid
$$

It turns out (Göl12) that

$$
R D_{2^{t}-1}(y)=\sum_{i=0}^{t-1} y^{2^{i}-1}
$$

Resilience Against other Attacks

Linear Attacks Depends on non-linearity. We know no general fomula.
Experiments:

- No pattern for the value of the non-linearity.
- Value of non-linearity for small n : not bad.

Algebraic Attacks Depends on algebraic degree, i.e. Hamming weight of exponent.

- Algebraic degree: always t (or s).
- Inverse also matters.
- $t=\frac{k n+1}{3}$ (and corresponding s): very bad.
- $s=\frac{n+3}{2}$ is pretty good.

Conclusion

All locally differentially 6-uniform monomials have exponent $2^{t}-1$ with:

- $t=3$ or $n-2$.
- $t=\frac{n-1}{2}$ or $s=\frac{n+3}{2}$.
- $t=\frac{k n+1}{3}$ or $s=\frac{(3-k) n+2}{3}$.
- Conjecture: $t=\frac{n}{3}$ or $s=\frac{2 n}{3}+1$.
- Conjecture: $t=\frac{n}{3}+1$ or $s=\frac{2 n}{3}$.

Thank you!

