

School of Science and Technology

Master's Thesis Presentation On the Properties of S-boxes

Léo Perrin (perrin.leo@gmail.com) Supervisor: Céline Blondeau

Department of Information and Computer Science Aalto University, School of Science and Technology

March 18, 2013

Table of contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^t - 1$

The Case t = (kn + 1)/3

The Case t = (n - 1)/2

Observations

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^t - 1$

The Case t = (kn + 1)/3

The Case t = (n - 1)/2

Observations

Purpose of Cryptography

- ► Use of electronic communications is *huge*.
 - HTTP
 - Mail
 - Cloud computing
- Communication through unsecure channel requires protection.
- Electronic data must be protected too.
 - Thumb drive
 - Computer HDD

Cryptographic Primitives

Protection: cryptographic primitives

- Read only by the recipient: Ciphers.
- ► No tampering: Hash functions, MAC.
- Authentication: Electronic Signatures.

Asymmetric vs. Symmetric

Today: Symmetric cryptography.

Block Cipher

Claude Shannon's construction (ciphers): multiple iteration of confusion and diffusion.

Diffusion Small modification in input \implies Great modification in output.

Confusion No simple relation between input and output.

Substitution-Permutation Network

Attack Models

Attack (Cryptanalysis) The action of trying to extract useful data from a ciphertext without any previous knowledge of the key.

Chosen plaintext attack The attacker has a black-box cipher + key and can encrypt any plaintext with it.

Statistical attack Uses the fact that the distribution of ciphertext has some statistical bias.

...

Differential Cryptanalysis (1/2)

Differential cryptanalysis relies on the existence of (a, b) such that $E_k(x + a) + E_k(x) = b$ for many plaintexts x.

Differential Cryptanalysis (2/2)

Idea: look at pairs (a, b) called differentials that have a high probability for a fixed *k*.

Definition (Propagation ratio)

$$R_{p}(\boldsymbol{a},\boldsymbol{b}) = \Pr[E_{k}(\boldsymbol{x}+\boldsymbol{a}) + E_{k}(\boldsymbol{x}) = \boldsymbol{b}]$$
$$= \frac{\delta(\boldsymbol{a},\boldsymbol{b})}{2^{n}}$$

where $\delta(\mathbf{a}, \mathbf{b})$ is the number of plaintexts x such that $E_k(x + \mathbf{a}) + E_k(x) = \mathbf{b}$

S-boxes

S-boxes are key components of most ciphers (SPN and Feistel).

▶
$$S: \{0,1\}^n \mapsto \{0,1\}^m$$

- S-boxes should be non-linear (confusion).
- ► Monomials (x → x^d) imply "easy" study and "easy" hardware implementation.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^t - 1$

The Case t = (kn + 1)/3

The Case t = (n - 1)/2

Observations

Math Reminder and Notations (1/2)

- \mathbb{F}_{2^n} is the field of characteristic 2 of size 2^n .
- Frobenius automorphism:

$$(a+b)^{2^{i}}=a^{2^{i}}+b^{2^{i}}.$$

• The absolute trace over \mathbb{F}_{2^n} is:

$$\operatorname{Tr}(x) = \sum_{i=0}^{n-1} x^{2^i}, \ \operatorname{Tr}(x) \in \{0,1\}$$

Math Reminder and Notations (2/2)

We denote:

•
$$\mathcal{F} = \mathbb{F}_{2^n} \setminus \{0, 1\}$$

• and $\mathcal{F}_c = \{x \in \mathcal{F}, \operatorname{Tr}(x) = c\}$

• The derivative of $F : \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^m}$ with respect to $a \in \mathbb{F}_{2^n}^*$ is:

$$\mathbb{D}_a F(x) = F(x+a) + F(x)$$

Differential Uniformity

Resistance against differential cryptanalysis depends on the differential uniformity (introduced by Nyberg): Let $F : \mathbb{F}_{2^n} \mapsto \mathbb{F}_{2^m}$. Then:

$$\delta(a,b) = |\{x \in \mathbb{F}_{2^n}, \mathbb{D}_a F(x) = b\}|$$

Definition

The differential uniformity of *F* is u(F) with:

$$u(F) = \max_{a \neq 0, b \in \mathbb{F}_{2^n}} \delta(a, b)$$

Functions *F* such that u(F) = 2 are called Almost-Perfect Non-linear (APN).

Differential Spectrum

For monomials, studying $\delta(1, b)$ is enough:

$$(x+a)^d + x^d = b \Leftrightarrow a^d \left(\left(\frac{x}{a}+1\right)^d + \left(\frac{x}{a}\right)^d \right) = b$$

Let $\delta(b) = \delta(1, b)$.

Definition Let $\omega_i = |\{b \in \mathbb{F}_{2^n}, \delta(b) = i\}|$. The differential spectrum of a monomial *F* is:

$$\mathbb{S} = \{\omega_0, \omega_2, ..., \omega_{u(F)}\}$$

Cryptographic Relevance of the Spectrum

Studied differential: ((0, 1, 0, 1), (0, 1, 0, 1)).

Pr[(a, b)] $= \sum_{b \in \mathbb{F}_{2^n}} Pr[S : 1 \mapsto b]^2$ $= \frac{1}{2^{2n}} \sum_{k=0}^{u(S)} \omega_k \cdot k^2$ $= \frac{\ell_S}{2^{2n}}$

Influence of the Differential Spectrum

$u(F_d)$	d	Differential Spectrum of F_d	ℓ_{F_d}
4	511	$\omega_0 = 513, \ \omega_2 = 510, \ \omega_4 = 1$	2056
	84	$\omega_0 = 572, \; \omega_2 = 392, \; \omega_4 = 60$	2528
	103	$\omega_0 = 588, \ \omega_2 = 360, \ \omega_4 = 76$	2656
	87	$\omega_0 = 632, \; \omega_2 = 272, \; \omega_4 = 120$	3008
	160	$\omega_0 = 768, \ \omega_2 = 0, \ \omega_4 = 256$	4096
6	147	$\omega_0 = 597, \ \omega_2 = 347, \ \omega_4 = 75, \ \omega_6 = 5$	2768
	122	$\omega_0 = 608, \ \omega_2 = 330, \ \omega_4 = 76, \ \omega_6 = 10$	2896
	152	$\omega_0 = 628, \ \omega_2 = 300, \ \omega_4 = 76, \ \omega_6 = 20$	3136
	118	$\omega_0 = 623, \ \omega_2 = 315, \ \omega_4 = 61, \ \omega_6 = 25$	3136
	7	$\omega_0 = 583, \ \omega_2 = 405, \ \omega_4 = 1, \ \omega_6 = 35$	2896
	54	$\omega_0 = 667, \ \omega_2 = 242, \ \omega_4 = 75, \ \omega_6 = 40$	3608
	167	$\omega_0 = 688, \ \omega_2 = 210, \ \omega_4 = 76, \ \omega_6 = 50$	3856

Properties of the Differential Spectrum

 $\mathbb{S} = \{\omega_0, \omega_2, ..., \omega_{\delta(F)}\}$: differential spectrum of a monomial *F*.

$$\sum_{i=0}^{\delta(F)} \omega_i = 2^n \quad , \quad \sum_{i=0}^{\delta(F)} i \cdot \omega_i = 2^n$$

Lemma

If $e \equiv 2^k \cdot d \mod (2^n - 1)$ or if $e \equiv d^{-1} \mod (2^n - 1)$ then F_e has the same spectrum as F_d .

Theorem

Let $G_t(x) = x^{2^t-1}$ and s = n - t + 1. Then G_t and G_s have the same restricted differential spectrum.

Differential Spectra of $x \mapsto x^{2^{t-1}}$ for n = 14

t	$\delta(0), \delta(1)$	restricted spectrum
2	2,2	0 [8192] 2 [8190]
3	0,4	0 [9578] 2 [6111] 6 [693]
4	2,2	0 [9548] 2 [6216] 6 [588] 14 [30]
5	0,4	0 [9578] 2 [6111] 6 [693]
6	2,2	0 [9548] 2 [6216] 6 [588] 14 [30]
7	126 , 4	0 [8255] 2 [8127]
8	2 , 128	0 [8255] 2 [8127]
9	0,4	0 [9548] 2 [6216] 6 [588] 14 [30]
10	2,2	0 [9578] 2 [6111] 6 [693]
11	0,4	0 [9548] 2 [6216] 6 [588] 14 [30]
12	2,2	0 [9578] 2 [6111] 6 [693]
13	0,4	0 [8192] 2 [8190]

On the 2,4 Differentially Uniform Functions

Differentially 2 and 4-uniform monomials are well known.

name	exponent
quadratic	2 ^t + 1
Kasami	$2^{2t} - 2^{t} + 1$
Bracken-Leander	$2^{2t} + 2^{t} + 1$
Inverse	2 ^{<i>n</i>-1} - 1

Conjecture: All differentially 4-uniform are in this table.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^t - 1$

The Case t = (kn + 1)/3

The Case t = (n - 1)/2

Observations

Kloosterman's Sum

It is denoted K(1):

$$\begin{split} \mathcal{K}(1) &= \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\mathrm{Tr}(x+x^{-1})} \\ &= 2^n - |\{x \in \mathbb{F}_{2^n}, \mathrm{Tr}(x+x^{-1}) = 1\}| \\ &= 1 + \frac{(-1)^{n-1}}{2^{n-1}} \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i \binom{n}{2i} 7^i, \end{split}$$

with
$$(-1)^{\text{Tr}(x^{-1})} = 1$$
 when $x = 0$.

Differential Spectrum of $x \mapsto x^7$

Blondeau, Canteaut and Charpin (**BCC11**): the spectrum of $x \mapsto x^7$ (and of $x \mapsto x^{2^{n-2}-1}$) is:

If *n* is odd, then:

$$\omega_6 = \frac{2^{n-2}+1}{6} - \frac{K(1)}{8}, \ \omega_4 = 0$$

$$\omega_2 = 2^{n-1} - 3\omega_6, \ \omega_0 = 2^{n-1} + 2\omega_6 + 1$$

If n is even, then:

$$\omega_6 = \frac{2^{n-2} - 4}{6} + \frac{K(1)}{8}, \ \omega_4 = 1$$
$$\omega_2 = 2^{n-1} - 3\omega_6 - 2, \ \omega_0 = 2^{n-1} + 2\omega_6 + 1$$

Blondeau's Conjectures

Conjecture 8.9. La fonction $G_t(x) = x^{2^{t-1}}$ avec t = (n-1)/2 a le même spectre différentiel que la fonction $G_3 = x^7$.

Conjecture 8.10. Soient n et k tel que $n \equiv k \mod 3$ et k = 1 ou 2 alors le spectre différentiel privé de $\delta(0)$ et $\delta(1)$ de $G_{\frac{n+k}{2}}$ est le même que celui de $G_3(x) = x^7$.

Conjecture

$$G_t(x) = x^{2^t-1}$$
 with $t = (n-1)/2$ has the same spectrum as $G_3(x) = x^7$.

Conjecture

Let *n* and *k* be such that $n \equiv k \mod (3)$ and k = 1 or 2; then the differential spectrum minus $\delta(0)$ and $\delta(1)$ of $G_{(n+k)/3}$ is the same as that of $G_3(x) = x^7$.

Outline of the Proof in BCC11

- 1. $\delta(0)$ and $\delta(1)$ are computed independently.
- 2. Re-write $(x + 1)^7 + x^7 = b$:

<

$$\begin{cases} \ell_{\beta}(y) = 0 \\ \mathsf{Tr}(y) = 0, \end{cases} \quad \ell_{\beta} = y^{3} + y + \beta.$$

- 3. Aim: to compute $\omega_0 = \#\{\beta \mid \text{system has no solution}\}$.
 - A theorem gives the number of roots of ℓ_{β} depending on β .
 - Explain why when ℓ_{β} has 3 roots, exactly 1 or 3 satisfy the trace condition.
 - Use Kloosterman's sum K(1) when ℓ_{β} has 1 root.
- 4. Compute the rest of the spectrum using $\sum \omega_i = 2^n$ and $\sum i \cdot \omega_i = 2^n$.

Outline of our PROOFS

- 1. $\delta(0)$ and $\delta(1)$ are computed independently.
- 2. Re-write $(x + 1)^{2^{t}-1} + x^{2^{t}-1} = b$:

$$\left\{ egin{array}{ll} \mathcal{L}_{eta}(m{v}) &= m{0} \ \mathbf{Tr}(m{v}^q) &= m{c}, \end{array}
ight. \mathcal{L}_{eta}(m{v}) = m{v}^{2^t+1} + m{v} + eta \end{array}$$

- 3. Aim: to compute $\omega_0 = \#\{\beta \mid \text{system has no solution}\}$.
 - Use a theorem to find number of roots of \mathcal{L}_{β} .
 - Explain why when L_β has 3 roots, exactly 1 or 3 satisfy the trace condition.
 - Involve the Kloosterman's sum K(1) when \mathcal{L}_{β} has 1 root.
- 4. Compute the rest of the spectrum using $\sum \omega_i = 2^n$ and $\sum i \cdot \omega_i = 2^n$.

Same structure as in BCC11...

But!

 $t = 3 \implies$ small and constant degree of the polynomial (ℓ_{β} vs. \mathcal{L}_{β}). Here...

No.

More complicated. Lots of non-trivial computations not shown here.

Theorem 1 of Helleseth and Kholosha's Paper (08)

We define polynomial \mathcal{L}_a by

$$\mathcal{L}_a(x) = x^{2^t+1} + x + a.$$

- ▶ Let $t \le n$ and gcd(t, n) = 1. For any $a \in \mathbb{F}_{2^n}^*$, \mathcal{L}_a has either 0,1 or 3 roots in \mathbb{F}_{2^n} .
- ► \mathcal{L}_a has exactly one root $x_0 \in \mathbb{F}_{2^n}^*$ if and only if $\operatorname{Tr}\left((1+x_0^{-1})^{\tau}\right) = 1$ where $\tau \equiv (2^t - 1)^{-1} \mod (2^n - 1)$.

• Let
$$M_i = \#\{a \in \mathbb{F}_{2^n}^*, \mathcal{L}_a \text{ has } i \text{ roots}\}.$$

For *n* odd,
$$M_0 = \frac{2^n + 1}{3}$$
, $M_1 = 2^{n-1} - 1$, $M_3 = \frac{2^{n-1} - 1}{3}$.
For *n* even, $M_0 = \frac{2^n - 1}{3}$, $M_1 = 2^{n-1}$, $M_3 = \frac{2^{n-1} - 2}{3}$.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^t - 1$

The Case t = (kn + 1)/3

The Case t = (n - 1)/2

Observations

t=(kn+1/3)

Wanted to study t = (n + k)/3, but...

• If
$$k = 1$$
, $\frac{t}{t} = (\frac{n}{t} + 1)/3$.

• If
$$k = 2$$
, $s = (2n + 1)/3$, $(s = n - t + 1)$.

►
$$2^{(kn+1)/3} - 1$$
 is invertible modulo $2^n - 1$.

We studied t = (kn + 1)/3 with $2 \equiv n/k \mod 3$ instead.

Base Problem

BCC11: the number of solutions of $(x + 1)^{2^{t}-1} + x^{2^{t}-1} = b$ is the number of roots of

$$P_b(x) = x^{2^t} + bx^2 + (b+1)x$$

and half that of

$$\begin{cases} Q_b(y) = by \\ \mathbf{Tr}(y) = 0 \end{cases}, \ Q_b(y) = \sum_{i=0}^{t-1} y^{2^i}.$$

Rewriting the Problem (1/3)

An interesting observation:

$$Q_b(y)^{2^t} = \sum_{i=0}^{t-1} y^{2^{i+t}} = \sum_{i=t}^{2t-1} y^{2^i}$$
$$Q_b(y)^{2^{2t}} = \sum_{i=0}^{t-1} y^{2^{i+2t}} = \sum_{i=2t}^{3t-1} y^{2^i}.$$

Where 3t - 1 = (kn + 1) - 1. Thus:

$$Q_b(y) + Q_b(y)^{2^t} + Q_b(y)^{2^{2t}} = k \cdot \operatorname{Tr}(y) + y^{2^{kn}} = y.$$

Rewriting the Problem (2/3)

Furthermore:

$$L_1(u) = u + u^{2^t} + u^{2^{2t}}$$

has a unique root, 0.

We deduce that $Q_b(y) + by = 0$ and $\mathbf{Tr}(y) = 0$ is equivalent to:

$$\begin{cases} Q_b(y) + by + (Q_b(y) + by)^{2^t} + (Q_b(y) + by)^{2^{2t}} = 0\\ Tr(y) = 0 \end{cases}$$

Rewriting the Problem (3/3)

Thus, if we let z = by and $\beta = 1 + b^{-1}$:

$$\begin{cases} z^{2^{2t}} + z^{2^{t}} + \beta z = 0\\ \mathbf{Tr}(z) = 0 \end{cases}$$

At last, let $v = z^{2^t-1}$ and $\tau = (2^t - 1)^{-1} \mod (2^n - 1)$:

Theorem

The differential spectrum of G_t for t = (kn + 1)/3 is given by the number of solutions of the following system:

$$\begin{cases} \mathcal{L}_{\beta}(\mathbf{v}) = \mathbf{v}^{2^{t}+1} + \mathbf{v} + \beta = 0\\ \mathbf{Tr}(\mathbf{v}^{\tau}) = 0 \end{cases}$$

Counting Solutions (1/2)

We want to know when the system has no solutions. We know that:

- $\mathcal{L}_{\beta}(v) = 0$ has 0, 1 or 3 solutions.
- If v₁, v₂, v₃ are solutions, then v^T₁, v^T₂ and v^T₃ are solutions of a linear polynomial, so v^T₁ + v^T₂ + v^T₃ = 0.Thus, either

$$\mathbf{Tr}(v_1^{\tau}) = \mathbf{Tr}(v_2^{\tau}) = \mathbf{Tr}(v_3^{\tau}) = \mathbf{0}$$

$\begin{array}{c} \text{or} \\ \text{Tr}(v_1^{\scriptscriptstyle T}) = \text{Tr}(v_2^{\scriptscriptstyle T}) = 1, \ \text{Tr}(v_3^{\scriptscriptstyle T}) = 0 \end{array}$

So exactly 1 or 3 satisfy the trace condition.

Counting Solutions (2/2)

•
$$\mathcal{L}_{\beta}(v) = 0$$
 has no solutions in $M_0 = \frac{2^n - (-1)^n}{3}$ cases.

•
$$\mathcal{L}_{\beta}(v) = 0$$
 has a unique solution v_0 if and only if $\text{Tr}((1 + v_0^{-1})^{\tau}) = 1$.

Let \mathcal{B}_1 be defined by:

$$\mathcal{B}_1 = \{ v \in \mathcal{F}, \mathsf{Tr}(v^{\scriptscriptstyle au})
eq 0, \mathsf{Tr}ig((1+v^{-1})^{\scriptscriptstyle au}ig) = 1 \}$$

then the ω_0 is:

$$\omega_0 = \frac{2^n - (-1)^n}{3} + |\mathcal{B}_1|$$

and so:

$$\omega_0 = \frac{2^n - (-1)^n}{3} + 2^{n-2} + (-1)^n \frac{K(1)}{4}$$

Conclusion for t = (kn + 1)/3

Theorem

Let $t = \frac{kn+1}{3}$ and k = 1 or 2 such that $kn \equiv -1 \mod 3$. G_t is differentially 6-uniform. Its differential spectrum is:

if
$$n \equiv \pm 1 \mod 6$$
, $\omega_6 = \frac{2^{n-2}+1}{6} - \frac{K(1)}{8}$, $\omega_4 = 0$,
if $n \equiv \pm 2 \mod 6$, $\omega_6 = \frac{2^{n-2}-4}{6} + \frac{K(1)}{8}$, $\omega_4 = 1$,

$$\omega_2 = 2^{n-1} - 3\omega_6 - 2\omega_4$$
 and $\omega_0 = 2^{n-1} + 2\omega_6 + \omega_4$.

CQFD.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^t - 1$

The Case t = (kn + 1)/3

The Case t = (n - 1)/2

Observations

A New Approach

Study
$$t = (n - 1)/2$$
 for odd n .

• $x \mapsto x^{2^{t-1}}$ is a permutation and $\tau = (2^t - 1)^{-1} \equiv -2 - 2^{t+1} \mod (2^n - 1)$.

▶ $3 \times \frac{n-1}{2} \neq 1 \mod n$, so we can't do as before...

Idea!

Lemma (from **BCC11**)

The differential spectrum of a function is the same as that of its inverse.

A New Equation...

Number of solutions of:

$$(x+1)^{\tau}+x^{\tau}=b$$

After computations, this equation is equivalent to:

$$c(x^2+x)^{2^t+1}+x^{2^t}+x+1=0$$

where $c = b^{2^{n-1}}$. Let $y = x + x^2$: $A(y) = cy^{2^t+1} + \sum_{i=2}^{t-1} y^{2^i} + 1 = 0$

... And a New System

This system has half as many solutions as $(x + 1)^{\tau} + x^{\tau} = b$.

$$\begin{cases} A(y) = cy^{2^{t}+1} + \sum_{i=0}^{t-1} y^{2^{i}} + 1 = 0\\ Tr(y) = 0 \end{cases}$$

Sort of ugly...

But!

$$A(y) + A(y)^{2^{t+1}} = \operatorname{Tr}(y) + y^{2^{t}} (c^{2^{t+1}}y^{2^{t}+1} + cy + 1)$$

This system has exactly the same solutions as:

$$\begin{cases} c^{2^{t+1}}y^{2^{t+1}} + cy + 1 = 0\\ Tr(cy^{2^{t+1}}) = 1 \end{cases}$$

Obtaining the Base System

Let $v = yc^{2-2^{t+1}}$. Then the previous system becomes:

$$\begin{cases} \mathcal{L}_{\beta}(\boldsymbol{v}) = \boldsymbol{v}^{2^{t}+1} + \boldsymbol{v} + \beta = \boldsymbol{0} \\ \mathbf{Tr}(\boldsymbol{v}) = 1 + \mathbf{Tr}(\beta) \end{cases}$$

where $\operatorname{Tr}(v) = 1 + \operatorname{Tr}(\beta)$ is the same as $\operatorname{Tr}(v^{2^{t}+1}) = 1$.

Good...

But not a great trace condition.

 \implies We need another idea

An Expression of Triple Solutions

Lemma Define $\Lambda : \mathcal{F}_0 \to \mathcal{F}$ by

$$\Lambda(\ell) = \sum_{i=1}^t \ell^{2^i - 1}.$$

Then:

$$\{x \mid \mathcal{L}_{\beta}(x) = 0 \text{ and } \mathcal{L}_{\beta} \text{ has 3 roots}\} = Im_{\Lambda}(\mathcal{F}_{0})$$

- Λ is an injection over \mathcal{F}_0 .
- So is $l \mapsto 1/\Lambda(l)$.
- It holds that $Im_{\Lambda}(\mathcal{F}_0) \cap Im_{1/\Lambda}(\mathcal{F}_0) = \emptyset$.

Aalto University School of Science and Technology

An Expression of Unique Solutions

$$\mathcal{F} = \frac{\overline{\mathsf{Im}}_{\Lambda}(\mathcal{F}_0)}{=\mathsf{Im}_{1/\Lambda}(\mathcal{F}_0)}$$

Every $x \in \mathbb{F}_{2^n}$ is a root of some \mathcal{L}_β having exactly 1 or 3 roots. There is $2^{n-1} - 1$ of each (Theorem 1):

 $\{x \mid x \text{ is the unique root of } \mathcal{L}_{\beta}\} = \text{Im}_{1/\Lambda}(\mathcal{F}_0)$

Counting Solutions (1/2)

We want now to compute ω_0 using the expressions we found.

• $\mathcal{L}_{\beta}(v) = 0$ has 0, 1 or 3 solutions.

• If v_1 , v_2 , v_3 are solutions, then they yield:

•
$$V_3^{\tau} = V_1^{\tau} + V_2^{\tau}$$
.

•
$$v_1^{-1} + v_2^{-1} + v_3^{-1} = 1.$$

 \implies Exactly one or three satisfy the trace condition.

Counting Solutions (2/2)

•
$$\mathcal{L}_{\beta}(v) = 0$$
 has no solutions in $M_0 = \frac{2^n - (-1)^n}{3}$ cases.

• $\mathcal{L}_{\beta}(v) = 0$ has a unique solution v_0 if and only if there is $l \in \mathcal{F}_0$ such that $v_0 = 1/\Lambda(l)$.

Let \mathcal{B}_1 be defined by:

$$\mathcal{B}_1 = \{ \boldsymbol{v} \in \mathcal{F}, \mathbf{Tr}(\boldsymbol{v}^{2^t+1}) \neq 1, \exists l \in \mathcal{F}_0, \boldsymbol{v} = 1/\Lambda(l) \}$$

then ω_0 is:

$$\frac{2^n-1}{3}+|\mathcal{B}_1|$$

Again: $|\mathcal{B}_1| = 2^{n-2} + (-1)^n K(1)/4$.

Conclusion for t = (n-1)/2

We obtain (almost) the same result!

Theorem

Let **n** odd and t = (n - 1)/2. The functions G_t is locally differentially 6-uniform. Its differential spectrum is:

if
$$n \equiv \pm 1 \mod 6$$
, $\omega_8 = 0$, $\omega_6 = \frac{2^{n-2}+1}{6} - \frac{K(1)}{8}$,
if $n \equiv 3 \mod 6$, $\omega_8 = 1$, $\omega_6 = \frac{2^{n-2}-8}{6} - \frac{K(1)}{8}$,

 $\omega_4 = 0$, $\omega_2 = 2^{n-1} - 3\omega_6 - 4\omega_8$ and $\omega_0 = 2^{n-1} + 2\omega_6 + 3\omega_8$.

CQFD.

Table of Contents

Cryptographic Background

Differential Spectrum

The Exponent Family $2^t - 1$

The Case t = (kn + 1)/3

The Case t = (n - 1)/2

Observations

Dickson Polynomials (1/2)

Dickson polynomials $D_n(x, y)$:

$$D_n(x+y,xy)=x^n+y^n.$$

Definition of differential spectrum: number of roots of

$$(x+1)^d + x^d = b$$

 $\Leftrightarrow D_n(1, x^2 + x) = b.$

Hou. et al. (2009) introduced reversed Dickson polynomial

$$RD_d(y) = D_d(1, y).$$

Dickson Polynomials (2/2)

Equivalent definition of the differential spectrum:

 $\omega_{2k} = |\{b \in \mathbb{F}_{2^n}, RD_d(y) = b \text{ has } k \text{ solutions in } \mathcal{F}_0\}|$

Recall result from **BCC11**: for $d = 2^t - 1$,

$$\omega_{2k} = |\{b \in \mathbb{F}_{2^n}, \sum_{i=0}^{t-1} y^{2^i} = by \text{ has } k \text{ solutions in } \mathcal{F}_0\}|$$

It turns out (Göl12) that

$$RD_{2^{t}-1}(y) = \sum_{i=0}^{t-1} y^{2^{i}-1}.$$

Resilience Against other Attacks

Linear Attacks Depends on non-linearity. We know no general fomula.

Experiments:

- No pattern for the value of the non-linearity.
- Value of non-linearity for small n: not bad.
- Algebraic Attacks Depends on algebraic degree, i.e. Hamming weight of exponent.
 - ► Algebraic degree: always *t* (or *s*).
 - Inverse also matters.
 - $t = \frac{kn+1}{3}$ (and corresponding *s*): very bad.
 - $s = \frac{n+3}{2}$ is pretty good.

Conclusion

All locally differentially 6-uniform monomials have exponent $2^t - 1$ with:

- t = 3 or n − 2.
 t = ⁿ⁻¹/₂ or s = ⁿ⁺³/₂.
 t = ^{kn+1}/₃ or s = ^{(3-k)n+2}/₃.
 Conjecture: t = ⁿ/₃ or s = ²ⁿ/₃ + 1.
- Conjecture: $t = \frac{n}{3} + 1$ or $s = \frac{2n}{3}$.

Thank you!

