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Abstract

S-boxes are key components of many symmetric cryptographic primitives. Among
them, some block ciphers and hash functions are vulnerable to attacks based on
differential cryptanalysis, a technique introduced by Biham and Shamir in the early
90’s. Resistance against attacks from this family depends on the so-called differential
properties of the S-boxes used.

When we consider S-boxes as functions over finite fields of characteristic 2,
monomials turn out to be good candidates. In this Master’s Thesis, we study
the differential properties of a particular family of monomials, namely those with
exponent 2t−1. In particular, conjectures from Blondeau’s PhD Thesis are proved.

More specifically, we derive the differential spectrum of monomials with expo-
nent 2t − 1 for several values of t using a method similar to the proof Blondeau et
al. made of the spectrum of x 7→ x7. The first two chapters of this Thesis pro-
vide the mathematical and cryptographic background necessary while the third and
fourth chapters contain the proofs of the spectra we extracted and some observa-
tions which, among other things, connect this problem with the study of particular
Dickson polynomials.

Keywords: Symmetric cryptography, Differential uniformity, Differential spec-
trum, Kloosterman sum, Power function, Roots of trinomial, x 7→ x2t−1, Dickson
polynomial, Differential Cryptanalysis.
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Introduction

It is a euphemism to say that protecting data from eavesdropping or tempering is
a topic of crucial importance in the Internet era. Such protection is provided by
cryptographic primitives such as ciphers modifying data to make it impossible to
read without a key, hash functions associating an unfalsifiable fingerprint to any
binary string of any length or message authentication codes (MAC) used to ensure
a message was not modified.

The design of such cryptographic primitives is a complicated task and has been
an active topic in research laying at the intersection of pure mathematics and com-
puter science ever since the invention of computers. There are two main groups
of cryptographic primitives: the asymmetric and the symmetric ones. Asymmet-
ric cryptography deals (roughly) with building cryptosystems such that the key
to encrypt is made public and the key to decrypt, which is different, is kept se-
cret. However, we are interested here in symmetric cryptography which is about
encryption of data such that decryption and encryption use the same (secret) key.

When building a symmetric cipher, its designers must keep many things in
mind. It should be fast when being ran on a regular personal computer as well as
on much less computationally powerful embedded systems. It should be possible
for cryptographers to study it to assess its qualities so using a known structure
is a plus. Lastly and most obviously, it must be secure. But what does “secure”
mean in this context? Intuitively, a cipher with good security is a cipher such
that an attacker cannot recover the plaintext corresponding to a ciphertext and, in
particular, that recovering the key must be, for all practical purposes, impossible. To
achieve this, ciphers usually consist of the multiple combination of linear operations
and non-linear operations providing respectively diffusion and confusion (Shannon’s
construction). The non-linear operations are often done by small sub-functions from
F2m to F2n called S-boxes, where F2n is the finite field of characteristic 2 and size
2n.

A method allowing to retrieve the key used to encrypt a binary string is called
an attack. Examples of families of attacks are linear attacks and algebraic attacks.
Here, we study the resilience of ciphers against one of the main ones: the differential
attack. Introduced by Biham and Shamir in the early 90’s in [BS91], this attack
can be prevented using S-boxes with particular properties such as a low differential
uniformity, a quantity defined by Nyberg in [Nyb94]. A more finely grained measure
of its resilience is the differential spectrum which was properly defined by Blondeau
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viii INTRODUCTION

et al. in a recent paper [BCC10a]. The purpose of this master Thesis is to study the
differential properties of a particular class of S-boxes by proving conjectures made
in Blondeau’s PhD Thesis ([Blo11]).

S-boxes are functions from F2n to F2m and, as such, can be seen as polynomials.
Monomials, i.e. polynomial with only one non-zero coefficient are good candidates
for use as S-boxes because their algebraic structure allows an easier study and
because they are cheaper to implement in hardware. The class of exponents 2t −
1 was studied by Blondeau et al. in [BCC11] and, in particular, the complete
differential spectrum of x 7→ x7 corresponding to the case t = 3 was extracted.
We prove here that x 7→ x2t−1 yields essentially the same differential spectrum as
x 7→ x7 for t = (n − 1)/2 and t = (n + 3)/2 when n is odd and for t = (kn + 1)/3
and t = (jn + 2)/3 when 3 does not divide n and k = 1, 2 and j = 3 − k are such
that t is an integer. An article describing these results has been accepted at the
International Workshop on Coding and Cryptography 2013 [BP13].

While working on this Thesis, we learnt how to do research: its process of course
but also less scientific but still important things such as the rank of the different
conferences in theoretical computer science, names of researchers working in the
same field and thus whose lists of publications provide valuable resources, how to
write a scientific paper and how to submit it for publication. Another skill acquired
is the use of SAGE [SJ05], an open-source set of advanced mathematical Python
library providing, among other things, tools to perform computations in finite fields
of any characteristic. All the results presented here have been checked using it in
fields of size 27 up to 214.

The structure of this Thesis is as follows. First, we shall introduce the crypto-
logical concepts behind this work. In the second part, the notions corresponding to
the differential properties of an S-box are introduced and a review of known results
on this topic is made. The third part consists in the proofs of the main results of
this Thesis, namely the value of the differential spectrum of the monomials with
exponent t = (kn+ 1)/3 and t = (jn+ 2)/3 in a first section and then t = (n− 1)/2
and t = (n + 3)/2 in a second one. In the last chapter, remarks are made to link
this work with properties of the so-called reversed Dickson polynomials, to discuss
the general properties of these functions, to determine which are the best candi-
dates for use as a actual S-boxes and to show a connexion between monomials with
exponents 2t − 1 and 2t+1 − 1. Conjectures regarding the differentially 6-uniform
power functions are also discussed.
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Chapter 1

Cryptological Background

S-boxes are part of the design of many block ciphers, hash functions and message
authentication codes (MAC). Examples of block cipher are the DES (Data Encryp-
tion Standard) [Nat99] and its successor, the AES (Advanced Encryption Standard)
[DR98]. They are used of course to encrypt sensitive data but also as part of the
design of some cryptographic hash functions. Hash functions turn any binary string
into a “digest” of fixed length and are used to provide practically unfalsifiable fin-
gerprints for computer files. The last standard for hashing algorithms is Keccak
[BDPA11], winner of the SHA-3 competition.

Having “good” block ciphers is thus a very important factor to achieve a decent
security on modern computers. In this context, “good” means that the block cipher
must be resilient against a large variety of attacks, the main ones being differential
and linear cryptanalysis as well as their generalisations.

In the rest of this chapter, we shall give the definitions of some cryptological
concepts used throughout this Thesis. They are part of the cryptological folklore but
one can find them for instance in [Sti05]. Then, we shall look at what a differential
cryptanalysis is.

We denote by |s| the length of any binary string s and by s1||s2 the concatenation
of the binary strings s1 and s2.

1.1 Cryptographic Primitives
The whole point of this Master’s Thesis is to study some key components of many
symmetric block ciphers, namely the so-called S-boxes. First, let us formally define
what a symmetric block cipher is.

Definition 1 (Symmetric Cipher). A cipher C is a 5-tuple of finite sets (P, C,K, E ,D)
yielding the following properties:

• P is the set of the plaintexts.

• C is the set of the ciphertexts.

1



2 CHAPTER 1. CRYPTOLOGICAL BACKGROUND

• K is the set of the possible keys.

• For every k in K, there is an encryption rule ek : P → C and a decryption
rule dk : C → P such that for any plaintext x of P, (dk ◦ ek)(x) = x. In other
words, if we encrypt a text x with a key k and decrypt the ciphertext we just
obtained using the same key k, we have to obtain the plaintext x back (see
Figure 1.1).

x e

k

y d x

Figure 1.1. Schematic diagram of a symmetric cipher.

Note that it must of course hold that |ek(pi)| = |pi| = c because the transfor-
mation ek has to be a bijection. Otherwise, decryption would be impossible.

Definition 2 (Block cipher). A block-cipher C of block-size b is a symmetric cipher
which encrypts binary strings of size b into binary strings of size b.

A block cipher as such does not allow the encryption of binary strings of arbitrary
length. However, if we “slice” a plaintext x1||x2||...||xu of size b × u into u blocks
of size b (x1, ..., xu), we can run a block cipher on every block we obtained. The
way in which the block cipher is used to encrypt this longer ciphertext is called the
mode of operation. The simplest consists in encrypting each block separately (see
Figure 1.2). It is called ECB (Electronic Code Book) but should not be used due
to its lack of security.

x1 xi xu

y1 yi yu

e e ek k k

Figure 1.2. The ECB mode of encryption: a plaintext x made of u blocks xi of size
b is encrypted into a ciphertext y made of u blocks yi.

Ciphers are usually built using multiple iterations of a so-called round function
made of the composition of a linear operation and a non-linear one. The non-linear
part is often performed by dividing the input into several blocks of small size and
then applying a highly non-linear function to each of these blocks separately. The
functions applied to these small blocks are called S(ubstitution)-boxes. Such S-boxes
are at the core of the design of a broad family of symmetric block ciphers: that of



1.2. CRYPTANALYSIS 3

the Substitution-Permutation Networks (SPN). They can also be used as part of
the round function of other constructions such as Feistel Networks — it is the case
of the DES for instance.

The general principle of the round function of a Substitution-Permutation Net-
work is given Figure 1.3. Such a function is applied several times on the input (one
iteration is called a round), the keys ki depending on the index of the round. Actual
implementations of SPN’s include Rijndael [DR98], which is the Advanced Encryp-
tion Standard (AES), and the ultra-lightweight cipher PRESENT [BKL+07]. En-
cryption of a binary string x0 is performed by iteratively adding1 xi with the round
key ki, applying the non-linear transformation S to each sub-block of the result and
then use a bijection P on the whole output of the S-boxes to obtain xi+1.

xi

ki

S1 S2 S3

P

xi+1

Figure 1.3. The round function of a Substitution-Permutation Network using three
S-boxes. It is applied several time to the current state.

Note that S-boxes may not have to be permutations in the case where they are
used in block ciphers that are not SPN’s. For instance, those used in the Feistel
function of the Data Encryption Standard (DES) map six bits to four, as described
in the specification of this algorithm [Nat99].

1.2 Cryptanalysis
The aim of this Thesis is to study a property of the S-boxes that is crucial for
the resilience of a cryptosystem against a differential cryptanalysis. First, we shall

1Addition is performed in F2n so, in particular, 1 + 1 = 0.



4 CHAPTER 1. CRYPTOLOGICAL BACKGROUND

define what a cryptanalysis is, then we shall look at the different attack models and,
at last, we shall see what a differential cryptanalysis is.

1.2.1 Some Attack Models

Definition 3 (Cryptanalysis). The action of trying to extract useful data from a
ciphertext without any previous knowledge of the key. A person trying to perform a
cryptanalysis is called an attacker.

The Kerchoff assumption is usually assumed in cryptography. It states that the
attacker knows the algorithm used to encrypt some data but not the key. Hence,
the task of an attacker is usually to find the said key.

The attacker can have different kind of data at their disposal. The data they
have defines the attack model they are using.

Definition 4 (Known ciphertext). Such an attack is performed by an attacker
having only some ciphertexts.

Definition 5 (Known plaintext). In this cryptanalysis, the attacker has several
pairs plaintext-ciphertext obtained using the same cipher and the same key.

Definition 6 (Chosen plaintext). In this case, the attacker has the complete en-
cryption algorithm (including its key) as a black-box. Therefore, this attack is a
known plaintext attack where the attacker can choose the plaintexts.

There are other attack models but their study is beyond the scope of this Thesis.

1.2.2 General Principle of the Differential Cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir in [BS91]. However,
its principle was already known by the NSA and IBM earlier. In fact, it has been
disclosed since that the DES algorithm was designed to be resilient against this
attack [Cop94]. This section provides an overview of the principle of this attack.

It is a chosen plaintext attack: the attacker has a “black-box” made of the cipher
and its key and he can encrypt any plaintext until the key is retrieved. This attack
looks at the so-called propagation ratios which are the probabilities of differentials,
objects that are defined below.

Definition 7. Let E : F2m → F2n be a block cipher. We call differential a pair
(∆x,∆y) where

• ∆x = x⊕ x′ where x and x′ are two plaintexts.

• ∆y = y ⊕ y′ where y = E(x) and y′ = E(x′).



1.3. CRITERIA FOR THE RESILIENCE AGAINST DIFFERENT ATTACKS 5

Definition 8. The propagation ratio Rp(a, b) of a differential (a, b) is the probability
of the differential (a, b) or, in other words, the probability that the output difference
∆y equals b knowing that the input difference ∆x equals a:

Rp(a, b) = Pr[E(x) + E(x+ a) = b]. (1.1)

If the cipher used was perfect, the probability of every differential would be
the same, i.e. 2−n. However, in practice, some differentials have a much higher
probability. The aim of a differential cryptanalysis is to use this imperfection to
retrieve the key.

Consider a block cipher made of r rounds with round function Fki (1 ≤ i ≤ r)
described Figure 1.3, ki being the i-th round key. Let R be the composition of the
S-box layer and the permutation layer such that Fk(x) = R(x+ k). Let (a, b) be a
differential:

Fk(x+ a) + Fk(x) = b

=⇒ R(x+ a+ k) +R(x+ k) = b.

Then the difference in the input of E is (x+ a+ k) + (x+ k) = a: the key does not
play any role any more. The idea of differential cryptanalysis is to find a sequence of
high probably differentials (ai, bi) of the function Fki for i in [1, r− 1] which can be
“plugged” together in the sense that Fki(x)+Fki(x+ai) = bi. Such differentials form
a so-called differential trail. The usual hypothesis is that of the round independence:
the probability of the differential trail is the product of the propagation ratio of the
differentials it is made off.

Once a differential with high2 probability is found, many couples of ciphertexts
(x, x′) such that x + x′ = a are fed to the encryption algorithm. We know with
“high” probability some of the bits of the output of the before-last round, namely
those that are on the differential. Therefore, we can retrieve some information about
the key kr used in the last round.

Note that if the distribution of the propagation ratios is close to the uniform dis-
tribution, this attack will fail because it is in this case impossible to find differential
trails with high probabilities.

1.3 Criteria for the Resilience Against Different Attacks
Criteria have been found to predict the influence an S-box will have over the re-
silience of a cipher against not only differential cryptanalysis but also related attacks
such that higher order differential cryptanalysis or different ones like linear attacks.
Note that they only provide information about the strength of an encryption algo-
rithm against currently known attacks. They are thus necessary for a cipher to be
“good” but may turn out not to be sufficient in the future if a new family of attack
is discovered.

2“High” in this context means significantly higher than 2−rn where n is the block size and r
the number of rounds.
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Nyberg [Nyb94] provides such a list. S-boxes must be:

• Highly non-linear.

• Have a high algebraic degree.

• Efficient construction and computability.

• Good resistance against differential cryptanalysis.

Non-linearity and algebraic degree are notions defined in Section 4.3. The prop-
erties implying a good resistance against differential cryptanalysis are related to
the differential properties of the S-box and are the main topic of this Thesis. In
what follows, we shall first introduce the concepts of differential uniformity and
differential spectrum and then study extensively those of a family of monomials.



Chapter 2

Differential Properties of Monomials

2.1 Mathematical Notations
Let us first introduce the mathematical concepts and notations we are going to use
throughout this Thesis.

Definition 9 (Finite field of characteristic 2). Up to isomorphism, there is only
one finite field of characteristic 2 and size 2n. We denote this field F2n.

Definition 10 (Boolean Function). A Boolean function with n variables is a func-
tion from Fn2 to F2. The set of the Boolean functions with n variables is Bn.

It is natural to extend this definition to function having not a single bit as their
output but several.

Definition 11 (Vectorial Function). A vectorial function is a function from F2n to
F2m. The set of all such vectorial functions is denoted Bmn .

A tool we shall use extensively is the trace function, in particular the so-called
absolute trace.

Definition 12 (Trace). The trace of α ∈ F2n over the sub-field F2k with k dividing
n is equal to:

Trnk(α) =
n/k−1∑
i=0

α2ki .

Definition 13 (Absolute trace). We call absolute trace the trace over F2 and we
denote it Tr:

Tr(α) =
n−1∑
i=0

α2i .

We shall focus on a particular type of functions: the monomials. Furthermore,
we shall focus mainly on power permutations.

7



8 CHAPTER 2. DIFFERENTIAL PROPERTIES OF MONOMIALS

Definition 14 (Permutation). A permutation over F2n is a function which maps
every element of F2n to a unique element of F2n.

Definition 15 (Power permutation). We call “power permutation” a bijective mono-
mial, i.e. a monomial x 7→ xd over F2n which is a permutation.

The following lemma about power permutations is well known and will be used
in this Thesis.

Lemma 1. A monomial x 7→ xd is a power permutation over F2n if and only if
gcd(d, 2n − 1) = 1.

As we shall study monomials with exponents 2t−1, the inverse of 2t−1 modulo
2n − 1 will often be used. When it exists, we shall denote it τ =

(
2t − 1

)−1

mod (2n − 1) and use the following theorem to compute it.

Theorem 1 (Theorem 7 from [KS12]). Let t and n be co-prime and t−1 be the
inverse of t modulo n. Then 2t − 1 is invertible modulo 2n − 1 and its inverse τ is:

τ ≡
(
2t − 1

)−1 ≡
t−1−1∑
i=0

2ti mod (2n − 1).

At last, the size of any set S is denoted |S|.

2.2 Differential Spectrum: Definition and Properties
Now that the background of our study is defined, let us look at the definition of
the differential spectrum itself as well as that of related concepts. The definitions
of coefficients δ(a, b) and of differential uniformity were introduced in [Nyb94].

Definition 16 (Derivative). Let F be a function of Bmn and let a be an element of
F2n. The derivative of F to the direction a is defined by

DaF : x 7→ F (x+ a) + F (x).

Definition 17. Let F be a function of Bmn , let a be an element of F2n and b be in
F2m. Then we call δ(a, b) the following quantity:

δ(a, b) = |{x ∈ F2n ,DaF = b}|.

Recall the definition of the propagation ratio (Definition 8): we have the follow-
ing connexion between Rp(a, b) and δ(a, b):

Rp(a, b) = δ(a, b)
2n . (2.1)

Therefore, the lower the values δ(a, b), the better.
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Note that if x is a solution of DaF (x) = b then so does x + a. Indeed, in
characteristic 2, F (x+a+a) +F (x+a) = F (x) +F (x+a). Thus, δ(a, b) has to be
even. Besides, if F is a monomial x 7→ xd, then we have the following for a 6= 0:1

F (x+ a) + F (x) = (x+ a)d + xd

= ad
((x
a

+ 1
)d +

(x
a

)d)
.

Therefore, δ(a, b) = δ(1, b/ad). To know the value of all the δ(a, b), it is thus
enough to study all the δ(1, b). For the sake of simplicity and since this is the
quantity we shall deal with, we let:

δ(b) = δ(1, b)

Definition 18 (Differential uniformity). Let F be a function of Bmn . The differential
uniformity of F is the following quantity:

u(F ) = max
a6=0,b

(
δ(a, b)

)
We then say that F is differentially u(F )-uniform. If F is a monomial, we have
that

u(F ) = max
a6=0,b

(
δ(b)

)
.

As δ(0) and δ(1) often require a special treatment, we introduce the local dif-
ferential uniformity.

Definition 19 (Local differential uniformity). We say that a monomial F is locally
differentially ∆-uniform if δ(b) ≤ ∆ for all b 6= 0, 1 and we say that the local
differential uniformity of F is ∆. We denote by U(F ) the local uniformity of a
monomial F .

In particular, functions which are differentially 2-uniform are called Almost Per-
fect Non-linear (APN). Their properties were intensively studied, see Section 2.4.1.
We now have all the tools at hand to give the definition of the differential spectrum,
a concept introduced in [BCC10a].

Definition 20 (Differential Spectrum). Let F (x) = xd be a power function over
F2n. Then for odd i we define ωi to be such that:

ωi = | {b ∈ F2n , δ(b) = i} |.

The differential spectrum of F is then the following:

{ω0, ω2, ..., ωu(F )}.

1The case a = 0 is of no importance anyway since D0F is always equal to zero.
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As we shall see later, the cases where b = 0 or b = 1 often require a special
treatment. Therefore, it is easier to study what we call the restricted differential
spectrum.

Definition 21 (Restricted differential spectrum). Let F (x) = xd be a power func-
tion over F2n. Then for odd i we define Ωi to be such that:

Ωi = | {b ∈ F2n\F2, δ(b) = i} |.

The restricted differential spectrum of F is then the following:

{Ω0,Ω2, ...,ΩU(F )}.

The sum of the elements of the spectrum of a monomial yields interesting values.

Lemma 2. The following two equalities hold if {ω0, ..., ωu(F )} is the differential
spectrum of a function F

δ(F )∑
i=0

ωi = 2n ,

δ(F )∑
i=0

i× ωi = 2n.

The differential spectrum is also not modified if we replace an exponent by
another from the same cyclotomic class or by its inverse modulo 2n − 1.

Lemma 3 (Lemma 1 in [BCC10a]). Let Fe = xe and Fd = xd be two power
functions. Fd and Fe have the same differential spectrum if one of the following
condition holds:

• There exists k such that e = 2kd mod (2n − 1) (i.e. e and d are in the same
cyclotomic class).

• gcd(2n − 1, d) = 1 and e = d−1 mod (2n − 1).

2.3 On the Cryptographic Importance of the Differential
Spectrum

The differential uniformity gives a first measure of the resilience of the cipher against
differential attack. Indeed, the higher it is, the less uniformly distributed the values
of S(x) + S(x+ a) will be.

However, for a given differential uniformity, different differential spectra will im-
ply different theoretical propagation ratio. Consider the “toy” cipher2 in Figure 2.1.
It is what is called a Generalised Feistel Network, a structure presented by Nyberg
in [Nyb96]: the input data is divided in four blocks of identical size and these then
go through the network. Our toy cipher has two rounds. Note that an addition



2.3. ON THE CRYPTOGRAPHIC IMPORTANCE OF THE DIFFERENTIAL
SPECTRUM 11

0 1 0 1

S

S

1 b 1 0

S

S

0 1 0 1
Figure 2.1. A very simple generalised Feistel network and how a differential propa-
gates through it. Places where the difference is b are represented thicker. Illustrates
the point of the study of the differential spectrum.

with the round key is part of the cipher but, since we represent the evolution of a
differential, it has no effect so we do not show it.

The probability to have this output difference knowing the input difference is
equal to the sum over all possible values of b of the probability that a difference of 1
is mapped by S to a difference b, and so twice (once because 0⊕S(1) = b and once
because we want S(1)⊕b = 0, i.e. S(1) = b again). In other words, the propagation
ratio of (0, 1, 0, 1)→ (0, 1, 0, 1) is R with

R =
∑
b∈F2n

Pr[S : 1→ b] ·Pr[S : 1→ b],

where the standard hypothesis of round independence is used.
Note that having a difference of 1 mapped to a difference b by S is equivalent

to having S(x+ 1) + S(x) = b for a plaintext x. Thus, if S is a monomial, we can
use its differential spectrum to compute this probability: b is such that δ(b) values
x exist such that S(x + 1) + S(x) = b, so Pr(S : 1 → b) is δ(b)/2n. There is ωδ(b)
such x’s for every b where {ω0, ...ωu(S)} is the differential spectrum of S. Thus, the

2It was also used by Blondeau in [Blo11] to illustrate the interest of the differential spectrum.
However, our study also takes differentially 6-uniform functions into account.
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propagation ratio R becomes

R =
u(S)∑
k=0

ωk ×
( k

2n
)2

= 1
22n

u(S)∑
k=0

ωkk
2.

To illustrate the interest of the differential spectrum, we computed for several
monomials Fd : x 7→ xd differentially 4- or 6-uniform and having different spectra
in the field F210 the value `d = ∑u(S)

k=0 k
2ωk. The monomials, their spectra and

the corresponding values of `d are given Table 2.1. Recall that the more evenly
distributed the propagation ratios are, the better the cipher. Therefore, is is best
to have a low value for `d.

u(Fd) d Differential Spectrum of Fd `d
511 ω0 = 513, ω2 = 510, ω4 = 1 2056
84 ω0 = 572, ω2 = 392, ω4 = 60 2528

4 103 ω0 = 588, ω2 = 360, ω4 = 76 2656
87 ω0 = 632, ω2 = 272, ω4 = 120 3008
160 ω0 = 768, ω2 = 0, ω4 = 256 4096
147 ω0 = 597, ω2 = 347, ω4 = 75, ω6 = 5 2768
122 ω0 = 608, ω2 = 330, ω4 = 76, ω6 = 10 2896
152 ω0 = 628, ω2 = 300, ω4 = 76, ω6 = 20 3136

6 118 ω0 = 623, ω2 = 315, ω4 = 61, ω6 = 25 3136
7 ω0 = 583, ω2 = 405, ω4 = 1, ω6 = 35 2896
54 ω0 = 667, ω2 = 242, ω4 = 75, ω6 = 40 3608
167 ω0 = 688, ω2 = 210, ω4 = 76, ω6 = 50 3856

Table 2.1. The differential properties of several monomials in F210 .

As we can see, the value of `d is not entirely determined by the differential
uniformity of Fd. Indeed, it varies depending on the value of the whole spectrum.
Furthermore, the value of `d (and thus the propagates ratio R) increases as the
coefficient ωu(Fd) increases except for F7. In this case, ω6 = 35 so we would expect
p7 to be greater than p118 = 3136 as for F118, ω6 = 25. However, since ω4 = 1 is
very low for F7, the influence of ω6 is “compensated”. We identify in Chapter 3
several functions having essentially the same spectrum as x 7→ x7.

We also notice that the lowest value of `d corresponds to the exponent 511, i.e.
210−1−1 which is in the cyclotomic class of the inverse function. As a matter of fact,
the inverse function is widely used today, most notably by the current encryption
standard AES [DR98].
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2.4 Known Differential Spectra
Differential uniformity has been the topic of intensive research since its introduction
in [Nyb94]. The most interesting functions from a cryptographic point of view are
those with the lowest differential uniformity (see Section 2.3). It is thus natural that
the first functions studied were the differentially 2-uniform (APN). Differentially 4-
uniformity was studied next as well as the differentially 6-uniform functions, which
are the topic of this Thesis.

2.4.1 APN and Differentially 4-Uniform Functions

APN-functions were the first studied and while their differential spectrum was not
explicitly extracted, it is actually always the same. Indeed, the equations a spectrum
must satisfy impose that

ω0 = 2n−1, ω2 = 2n−1.

Nyberg proved in [Nyb94], the paper where the notion of differential uniformity
is introduced, that the inverse function was differentially 2-uniform in F2n when n is
odd. Other results then followed; they are summarized in Table 2.2 and 2.33. Recall
that exponents in the same cyclotomic class yield the same differential spectrum
(and, in particular, the same differential uniformity). Thus, the exponent 2n−1 − 1
is the same as the inverse function (note that 2× (2n−1 − 1) ≡ −1 mod (2n − 1)).

name exponent condition(s) reference
Quadratic 2t + 1 gcd(t, n) = 1,

t ≤ m
[Nyb94]

Kasami 22t − 2t + 1 gcd(t, n) = 1,
2 ≤ t ≤ m

[Kas71]

Welsh 2m + 3 - [Dob99b]
Niho 2m + 2m/2 − 1

2m + 2(3m+1)/2 − 1
m even,
m odd

[Dob99a]

Inverse 2n−1 − 1 - [Nyb94]
Dobbertin 24g + 23g + 22g + 2g − 1 n = 5g [Dob00]

Table 2.2. Known APN power functions in F2n with n = 2m+ 1.

APN functions provide the best resilience against differential cryptanalysis. In
fact, they correspond to the optimal case. What is the point in studying other classes
of functions with higher differential uniformity then? Differential cryptanalysis is
not the only attack against which a cipher has to be secure and the properties needed
to achieve this are different — for instance, non-linearity is a crucial factor to prevent
linear attacks. Furthermore, there cannot be any bijective APN monomial in a field

3These tables were first presented in [Can06]
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name exponent condition(s) reference
Quadratic 2t + 1 gcd(t, n) = 1,

t ≤ m
[Nyb94]

Kasami 22t − 2t + 1 gcd(t, n) = 1,
2 ≤ t ≤ m

[Kas71]

Dobbertin 24g + 23g + 22g + 2g − 1 n = 5g [Dob00]
Table 2.3. Known APN power functions in F2n with n = 2m.

F2n if n is even [BCCLC06]. Furthermore, while an APN non-monomial polynomial
was found recently in F26 [BDMW10], it is the only APN function for even n known
today (up to equivalence). When n is even, differential 4-uniformity is the best a
power permutation can achieve.

Differentially 4-uniform monomials have also been extensively studied. It has
been conjectured in [Blo11] that all the differentially 4-uniform monomials are, up to
equivalence, given in Table 2.4. If this conjecture is true, all differentially 4-uniform
are known. While differential 4-uniformity is the best possible for a monomial for
even n, differential 6-uniformity can be sufficient in the case of large S-boxes.

name exponent
condition

ω0 ω2 ω4

Quadratic 2t + 1
gcd(t, n) = 2

2n − 2n−2 0 2n−2

Kasami 22t − 2t + 1
gcd(t, n) = 2

2n − 2n−2 0 2n−2

Inverse 2n−1 − 1
n even

2n−1 + 1 2n−1 − 2 1

Bracken,
Leander

22k + 2k + 1
n = 4k

5 · 24k−3 − 23k−3 23k−2(2k + 1) 23k−3(2k − 1)

Table 2.4. Known differentially 4-uniform power functions in F2n and their spectra.

2.4.2 Previously Known Differentially 6-Uniform Monomials

Differentially 6-uniform monomials have been studied in [BCC11] and experiments
lead to the conjecture that apart from a finite set of monomials in fields of small
size, all differentially 6-uniform monomials have exponent 2t − 1 for some t. We
shall denote these monomials Gt(x) = x2t−1. It was also proved that x 7→ x2t−1

with t = (n+ 3)/2 for n odd is differentially 6-uniform and that for t = (n− 1)/2,
x 7→ x2t−1 is locally differentially 6-uniform.

The complete differential spectrum when t = 3 was extracted in [BCC11]. It
corresponds to the monomial G3 : x 7→ x7. The expression found depends on the
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Kloosterman sum; its numerical value for n = 10 is given in Table 2.1 (bold line).

Definition 22. We denote by K(1) the so-called Kloosterman sum defined as

K(1) =
∑
x∈F2n

(−1)Tr(x+x−1), (2.2)

where (−1)Tr(x+x−1) is set to 1 when x = 0. Carlitz showed in [Car69] that K(1) is
also given by the following expression:

K(1) = 1 + (−1)n−1

2n−1

bn/2c∑
i=0

(−1)i
(
n

2i

)
7i. (2.3)

Theorem 2 (Theorem 5 of [BCC11]). G3 : x 7→ x7 is differentially 6-uniform and
its differential spectrum {ω0, ω2, ω4, ω6} is as follows.

• If n is odd, then:

ω0 = 2n−2 + 2n + 1
3 − K(1)

4 ,

ω2 = 3 · 2n−2 − 1
2 + 3 · K(1)

8 ,

ω4 = 0,

ω6 = 2n−2 + 1
6 − K(1)

8 .

• If n is even, then:

ω0 = 2n−2 + 2n − 1
3 + K(1)

4 ,

ω2 = 3 ·
(
2n−3 − K(1)

8
)
,

ω4 = 1,

ω6 = 2n−2 − 4
6 + K(1)

8 .

In the same paper, the following theorem was also proved. It gives the value of
the coefficients δ(0) and δ(1) for Gt : x 7→ x2t−1 for any t.

Theorem 3 (Theorem 1 from [BCC11] (end)). Let Gt be defined by Gt(x) = x2t−1.
Then the corresponding values of δ(0) and δ(1) are given by

δ(0) = 2gcd(t,n) − 2
δ(1) = 2gcd(t−1,n).

Note in particular that Gt is a bijection if and only if δ(0) = 0.
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In the same paper, a relation between Gt and Gs where s = n − t + 1 is also
given.

Theorem 4 (Corollary 2 from [BCC11]). Let t be in [1, n−1] and s = n− t+1 and
let δw(b) be the number of solutions of Gw(x)+Gw(x+1) = b. Then Gs and Gt have
the same restricted differential spectrum and the values δt(0), δt(1) and δs(0), δs(1)
are related as follows:

δs(0) = δt(1)− 2
δs(1) = δt(0) + 2.

Gs is the called the symmetric of Gt.

An important implication of this theorem is that computing the differential
spectrum of a monomial Gt always gives, as an immediate corollary, the one of Gs
where s = n− t+ 1. In particular, Blondeau et al. used it to derive the differential
spectrum of Gs : x 7→ x2n−2−1 (t = 3 implies s = n − 2). Table 2.5 shows the
restricted differential spectrum of Gt for all t for n = 10. As we can see, the line
between t = 5 and t = 6 is an axis of symmetry for the whole table.

t Restricted spectrum of Gt

2 ω0 = 512, ω2 = 510

3 ω0 = 582, ω2 = 405, ω6 = 35

4 ω0 = 582, ω2 = 405, ω6 = 35

5 ω0 = 527, ω2 = 495

6 ω0 = 527, ω2 = 495

7 ω0 = 582, ω2 = 405, ω6 = 35

8 ω0 = 582, ω2 = 405, ω6 = 35

9 ω0 = 512, ω2 = 510

Table 2.5. The restricted spectrum of Gt in F210 for every value of t.

Other families of locally differentially 6-uniform monomials are now known.
First conjectured by Blondeau in [Blo11], these differential spectra are given in
Section 2.5. The proof of Theorem 2 in [BCC11] is long and complicated, it is
derived from many lemmas and propositions. Nevertheless, the proofs presented in
the next chapter present a structure similar to this one so we give an outline of this
proof.

Proof sketch of Theorem 2. The proof made by Blondeau et al. consists in the
following steps.

1. First step: the values of δ(0) and δ(1) are computed separately using Theo-
rem 3.
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2. Second step: the problem is modified so as to make it possible to count its
solutions. To achieve this, it is shown that the equation (x+1)2t−1 +x2t−1 = b
has twice as many solutions as the system{ ∑t−1

i=1 y
2i = βy

Tr(y) = 0 (2.4)

with β = b+ 1 for any t.

3. Third step (the longest): the number of β such that the system has no solu-
tions is counted. First, t is fixed to 3 so the polynomialQβ(y) = y−1(∑3−1

i=1 y
2i+

βy
)

= y3 + y + β is studied. Note that a polynomial of degree 3 has either 0,
1 or 3 solutions so we study these cases separately.

• If Qβ has three roots (y1, y2, y3), then exactly one or three satisfy Tr(i) =
0 because y1 + y2 + y3 = 0 (recall that Qβ is a linear polynomial divided
by x).

• A result from the appendices of [KHCJ96] gives the numberM0 of values
of β such that Qβ has no roots.

• A result from [BRS67] gives a condition necessary and sufficient for Qβ
to have a unique root: it must hold that Tr(β−1) 6= Tr(1).

The number of β such that System 2.4 has no solutions is therefore M0 + |B1|
where B1 is the set of the β such that Qβ has a unique solution y which does
not satisfy the trace condition Tr(y) = 0.
The aim then is to compute the size of B1. Qβ has only one root if and only
if Tr(β−1) 6= Tr(1) and Qβ(y) = 0 if and only if β = y + y3. Therefore, B1
can be written as follows:

B1 =
{

(y + y3) ∈ F∗2n ,Tr
( 1
y + y3

)
6= Tr(1),Tr(y) = 1

}
.

Computations then show that the size of B1 is equal to this:

|B1| = {y ∈ F∗2n , Tr(y−1) 6= Tr(1), Tr(y) = 1}

This size turns out to be closely related to the Kloosterman sum (see Defini-
tion 22).

K(1)− 2 =
∑

y∈F2n\F2

(−1)Tr(y+y−1)

= |{y ∈ F2n\F2,Tr(y + y−1) = 0}| − |{y ∈ F2n\F2,Tr(y + y−1) = 1}|
= 2n − 2− 4|{y ∈ F2n\F2, Tr(y−1) = 0, Tr(y) = 1}|.

Depending on the parity of n, the size of {y ∈ F2n\F2, Tr(y−1) = 0, Tr(y) =
1} is either equal to |B1| or to 2n−1 − |B1|. This leads to the conclusion
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that System (2.4) has no solutions for M0 + 2n−2 + (−1)nK(1)/4 values of β.
Furthermore, recall that Ω0 is equal to the number of β such that System (2.4)
has no solutions. Therefore:

Ω0 = 2n − (−1)n
3 + 2n−2 + (−1)nK(1)

4 .

4. Fourth step: using the values of δ(0) and δ(1) extracted during the first step
and the equations given by Lemma 2, the whole spectrum is deducted.

2.5 New Locally Differentially 6-Uniform Monomials
We conclude this chapter on the known differential spectra by giving the ones we
extracted. The proofs of these spectra are the topic of the next chapter and of
[BP13]. They were first conjectured by Blondeau in [Blo11] at the end of Chapter 8
(“Spectre différentiel des monômes”); here are translations of these conjectures.

Conjecture 1. Let k be such that n + k ≡ 0 mod 3. Then the function Gt(x) =
x2t−1 with t = (n+ k)/3 has the same restricted spectrum as G3(x) = x7.

Conjecture 2. The function Gt(x) = x2t−1 with t = (n − 1)/2 has the same
restricted spectrum as G3(x) = x7.

Both turned out to be correct. The values of δ(0) and δ(1), computed separately,
complete the spectra. A list of all the locally differentially 6-uniform monomials Gt
for some t is given in Table 2.6. They all have the same restricted spectrum.

t condition over n permutation reference

3 Always yes if n 6≡ 0 mod 3 [BCC11]
kn+1

3 n 6≡ 0 mod 3 yes Theorem 7
n−1

2 n odd yes Theorem 11
n+3

2 n odd yes if n 6≡ 3 mod 6 Theorem 12
jn+2

3 n 6≡ 0 mod 3 yes if n ≡ ±1 mod 6 Theorem 8

n− 2 Always yes if n ≡ 1 mod 2 [BCC11]

Table 2.6. Values of t for which the power functions Gt is known to be locally
differentially 6-uniform.

Note that we studied t = (kn+ 1)/3 and t = (jn+ 2)/3 instead of t = (n+ k)/3
as stated in the conjecture. The values of t considered are actually the same in both
cases, a discussion as for why we preferred the new expression over the one in the
conjecture is given in Section 3.2.1.



Chapter 3

On the 2t−1 Exponent Family

We are interested in the differential spectrum of monomials Gt(x) = x2t−1 in F2n .
In this Thesis, we shall study the differential spectrum of two families of monomials:
those with t = (n − 1)/2 when n is odd and those with exponent t = (kn + 1)/3
when kn ≡ 2 (mod 3). These results will also give us the differential spectra
of polynomials related to these, namely those of the monomials Gs : x 7→ x2s−1

where s =
(
(3 − k)n + 2

)
/3 and s = (n + 3)/2. The values of these spectra were

conjectured by Blondeau in [Blo11]. Roughly speaking, these conjectures state that
the differential spectrum of these families of monomials is essentially the same as
that of x7 (see Conjectures 1 and 2).

3.1 Outline of the Proofs of the Differential Spectra
The general structure of the proofs we found for t = (n − 1)/2 and t = (n + k)/3
follows the same general flow as that found by Blondeau et al. for Theorem 2. We
shall give a common outline for both our proofs and point out the main difference
they have with that of [BCC11] but first, let us introduce a theorem crucial for this
study.

In our approach, we modify the problem statement to exhibit its relation with
the number of roots of the polynomial Lβ : x 7→ x2t+1 + x + β. Polynomials of
the structure xpl+1 + x + β where p is the characteristic of the field have been
studied by several researchers. Bluher published a paper [Blu04] giving general
properties of such polynomials in any field and Helleseth and Kholosha gave more
specific properties in characteristic 2 [HK08]. In particular, this last paper gives
two theorems which we shall use in this work. A combined statement of these two
theorems is Theorem 5.

Theorem 5. (From [HK08]) Let t be a positive integer such that t ≤ n and
gcd(t, n) = 1. For any a ∈ F∗2n, the polynomial La(x) = x2t+1 + x + a has either
none, one or three roots in F2n. Further La has exactly one zero in F∗2n, namely x0,
if and only if Tr

(
(1 + x−1

0 )τ
)

= 1.

19
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Let Mi = #{a ∈ F∗2n | La has i roots}.

• For n odd: M0 = 2n + 1
3 , M1 = 2n−1 − 1, M3 = 2n−1 − 1

3 .

• For n even: M0 = 2n − 1
3 , M1 = 2n−1, M3 = 2n−1 − 2

3 .

Outline of the proof of the differential spectrum of Gt. Here is a common outline for
both our proofs of the differential spectra of Gt for t = (n−1)/2 and t = (kn+1)/3.

1. First step: we compute δ(0) and δ(1) are easily computed using direct for-
mulas. Indeed, cases were b = 0, 1 would require a special treatment in the
general approach. Thus, we compute these separately.

2. Second step: we rewrite the equation (x+1)d+xd = b as a new system having
half its number of solution using new variables v and β:{

Lβ(v) = 0
Tr(vq) = ε.

(3.1)

In this system, v is the image of x+ x2 and β is that of b by some bijections;
q is a constant, ε ∈ {0, 1} is also a constant and Lβ is a simple polynomial:

Lβ(x) = x2t+1 + x+ β. (3.2)

In [BCC11], the polynomial Lβ is replaced by x 7→ x3 + x+ β.

3. Third step: we count the number of β such that System (3.1) has no solutions.
As in the proof of Blondeau et al. for t = 3, we have the following cases to
consider.

• If Lβ has three roots, we show that exactly one or three satisfy the trace
condition Tr(vq) = ε.

• A theorem (Theorem 5) gives us the number of cases where Lβ has no
solutions.

• If Lβ has one root, we count how many of these do not satisfy the trace
condition. This part is the most complicated and the arguments used
differ greatly from those used in [BCC11]. They are also very different if
t = (n− 1)/2 or t = (kn+ 1)/3.

4. The number of cases where System (3.1) has no roots is equal to Ω0. Thus,
we have all we need at this point to compute the whole spectrum. That of the
symmetric exponents 2s−1 with s = n−t+1 is also derived using Theorem 4.
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3.2 The Case t = (kn+ 1)/3

Recall Conjecture 1: monomials with exponent 2t − 1 with t = (n + k)/3 are
thought to have the same restricted spectrum as G3. This section is a proof of
this conjecture. Complete expressions of the spectra of these functions and their
symmetric are given at the end of this section in Theorems 7 and 8.

3.2.1 Statement of the Problem

Conjecture 1 is about exponent t1 = (n + k)/3 but, instead of considering this
particular value, we shall focus on t2 = (kn + 1)/3. If k = 1, then kn + 1 = n + k
so the corresponding exponents are strictly identical (t1 = t2). If k = 2, then
s1 = n− t1 + 1 turns out to be s1 = (2n+ 1)/3 = t2 so, according to Theorem (4),
this monomial has the same restricted differential spectrum.

Furthermore, (kn+1)/3 is invertible modulo n so Theorem 1 gives us the inverse
τ of 2t − 1 modulo 2n − 1: τ = 1 + 2t + 22t. Another consequence of this is that Gt
is always a bijection, unlike (n+ k)/3.

Therefore, instead of proving Conjecture 1 directly, we shall prove Theorem 7
which gives the differential spectrum of Gt with t = (kn + 1)/3. In what follows,
we let t be:

t = kn+ 1
3 , k ≡ 3− n mod 3.

Recall that in order to compute the differential spectrum of x 7→ x2t−1, we need
to know for every k the number ωk of b such that the number δ(b) of solutions of
the following equation is equal to k:

(x+ 1)2t−1 + x2t−1 = b. (3.3)

To prove this theorem, we shall use the same structure for our proof as for
that of the spectrum of x 7→ x7. First, we shall compute δ(0) and δ(1) separately
(Section 3.2.2). Then, we shall rewrite the equation defining the spectrum, i.e.
(x+ 1)2t−1 + x2t = b, in a way which will allow us to compute the number of roots
it has (Section 3.2.3). In a third step, we count the number of b’s such that the
system has no solutions (Section 3.2.4) and then, using this information, we extract
the whole spectrum and give it in Section 3.2.5.

3.2.2 Step 1: Computing δ(0) and δ(1)

From Theorem 3, we know that

δ(0) = 2gcd(t,n) − 2
δ(1) = 2gcd(t−1,n).
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As (t, n) are co-prime, δ(0) = 0.1 The value of δ(1) depends on the congruence of
n modulo 6.

δ(0) = 0

δ(1) =
{

2 if n ≡ ±1 mod 6
4 if n ≡ ±2 mod 6.

(3.4)

Now that these cases have been taken care of, we can assume that x 6= 0 and/or
that x 6= 1 in what follows. Indeed, if x = 0 or x = 1 then x2t−1 + (x+ 1)2t−1 = 1:
these cases are treated.

3.2.3 Step 2: Rewriting the Equation

It has been proved by Blondeau et al. (Theorem 3 of [BCC11]) that the number of
solutions of Equation (3.3) which are not 0 or 1 is equal to the number of non-zero
solutions of the following system:2{

Q(y) = by
Tr(y) = 0 (3.5)

where

Q(y) =
t−1∑
i=0

y2i .

Our aim now is to compute the number of non-zero b such that this system has
` solutions, and do so for all `. To do this, we shall first modify the expression of
this system using the following lemma.

Lemma 4. We notice that the sum ∑2
i=0Q(y)2it can be expressed in a simple way

using the trace of y:

Q(y) +Q(y)2t +Q(y)22t = y + k ·Tr(y)

where k = 1 or k = 2 is such that t = (kn+ 1)/3 is an integer.

Proof. This lemma is a direct consequence of the following observation:

Q(y) +Q(y)2t +Q(y)22t =
t−1∑
i=0

y2i +
t−1∑
i=0

y2i+t +
t−1∑
i=0

y2i+2t

=
t−1∑
i=0

y2i +
2t−1∑
i=t

y2i +
3t−1∑
i=2t

y2i

=
3t−1∑
i=0

y2i .

1Note that δ(0) = 0 is equivalent to the monomial being a bijection.
2A new and different method to derive this system is discussed in Section 4.1.2.
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As 3t = kn+ 1, this sum is equal to:
kn∑
i=0

y2i =
n−1∑
i=0

y2i +
kn∑
i=n

y2i

= Tr(y) +
kn∑
i=n

y2i .

If k = 1, then ∑kn
i=n y

2i = y2n = y. Else, i.e. if k = 2, ∑kn
i=n y

2i = ∑n−1
i=0 y

2i + y2n =
Tr(y) + y.

It therefore holds that Q(y) +Q(y)2t +Q(y)22t = k ·Tr(y) + y.

A direct consequence of this lemma is that if Q(y) = by and Tr(y) = 0, then

Q(y) + by +
(
Q(y) + by

)2t +
(
Q(y) + by

)22t
= y + by + (by)2t + (by)22t

.

The following lemma states the converse is true.

Lemma 5. The following two systems have exactly the same solutions and, in
particular, the same number of solutions:{

Q(y) = by
Tr(y) = 0 ,

{
y + by + (by)2t + (by)22t = 0
Tr(y) = 0 .

Proof. The fact that Q(y) = by and Tr(y) = 0 is, as stated before, a direct conse-
quence of Lemma 4.

Let L1 be the polynomial defined by L1(x) = x + x2t + x22t . If we prove that
L1(x) = 0 is equivalent to x = 0, then the lemma will immediately follow.

The expression of the polynomial L1 can be written as follows:3

L1(x) = x+ x2t + x22t

= x
(
1 + x2t−1 + x(2t−1)(2t+1))

= xL1(x2t−1)

Since x 7→ x2t−1 is a bijection, we now need to show that L1 has no root; which we
shall do using [HK08]. First of all, it is shown that L1 has either 0, 1 or 3 solutions.
Proposition 5 of this paper states that L1 has three roots if and only if, using their
notations, Cn(1) = 0. Proposition 4 states that it has exactly one root if and only if
Zn(1) = 0 and Cn(1) 6= 0 where Ci(x) is defined for 1 ≤ i ≤ n− 1 by the following
induction

C1(x) = 1
C2(x) = 1

Ci+2(x) = Ci+1(x) + x2itCi(x)
(3.6)

3Recall that La was defined in Equation (3.2): La = x2t+1 + x+ a.
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and Zn(x) is a function of Cn−1(x) and Cn+1(x):

Zn(x) = Cn+1(x) + xC2t
n−1(x). (3.7)

For x = 1, the expression of Ci(1) can be computed easily. We have:

C1(1) = 1
C2(1) = 1
C3(1) = 1 + 1 = 0
C4(1) = 0 + 1 = 1
C5(1) = 1 + 0 = 1
C6(1) = 1 + 1 = 0
C7(1) = 1 + 0 = 1

...

Cn(1) is equal to zero if and only if 3 divides n. Since we consider cases where 3
does not divide n (recall that kn = 3t + 1), we always have Cn(1) = 1. Hence, L1
cannot have three solutions.

Furthermore, Zn(1) = Cn−1(1) + Cn+1(1). Since 3 does not divide n, it must
divide exactly one of n−1 and n+1. Thus, Zn(1) = 1, which means that L1 cannot
have one root either.

This concludes the proof.

We can modify the system by introducing a new variable z = by. In this case,

y + by + (by)2t + (by)22t = (1 + b−1)z + z2t + z22t
.

Note that y+by+(by)2t+(by)22t = y+z+z2t+z22t so if y+by+(by)2t+(by)22t = 0
and Tr(y) = 0 then Tr(z) = 0. Conversely, if y + z + z2t + z22t = 0 and Tr(z) = 0
then Tr(y) = 0. Furthermore, if b 7→ 1+b−1 is a bijection of F2n\{1}. Consequently,
the following lemma holds.

Lemma 6. The System (3.5) has exactly the same number of solutions as{
βz + z2t + z22t = 0
Tr(z) = 0

for b 6= 0 and β = 1 + b−1.

At last, we introduce a new variable v = x2t−1 using that x 7→ x2t−1 is a bijection
and this equality

βz + z2t + z22t = z ·
(
β + z2t−1 + z(2t−1)(2t+1))

to obtain the following theorem. Note that z = 0 implies by = 0, which means that
y = 0 since we only consider b 6= 0 but we are only interested in non-zero solutions
of Equation (3.5), so we can safely remove the solution z = 0.
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Theorem 6. The number of solutions x 6= 0, 1 of the differential equation (x +
1)2t−1 + x2t−1 = b for b 6= 0 is twice that of the following system for β = 1 + b−1:{

Lβ(v) = 0
Tr(vτ ) = 0. (3.8)

This system has the same structure as the one presented at the end of the second
step of our sketch of proof (Section 3.1, System (3.1)), namely{

Lβ(v) = 0
Tr(vq) = ε.

Indeed, setting ε = 0 and q = τ gives System (3.8).

3.2.4 Step 3: Computing Ω0

Theorem 6 tells us that counting the solutions of System (3.8) for all β 6= 0, 1
will give us the differential spectrum of Gt. We know from Theorem 5 that Lβ has
either 0,1 or 3 solutions, so System (3.8) has at most 3 solutions. In other words, Gt
is locally differentially 6-uniform. Furthermore, the differential spectrum satisfies
Lemma 2 so all we need to know is the value of ω0: we can compute others from it.
At last, since we already know the value of δ(0) and δ(1), we just need the value of
Ω0 i.e. the number of b 6= 0, 1 such that (x + 1)2t−1 + x2t−1 = b has no solutions.
We showed it is equal to the number of β such that System (3.8) has no solutions.
There are three possibilities for an element β to be such that System (3.8) has no
solutions.

• If Lβ has no root.

• If Lβ has a unique root v0 such that Tr(vτ0 ) 6= 0.

• If Lβ has three roots v1, v2, v3, none of which satisfies the trace condition:
Tr(vτ1 ) = Tr(vτ2 ) = Tr(vτ3 ) 6= 0.

First of all, let us rule out the third case.

Lemma 7. If Lβ has three roots v1, v2, v3, then exactly one or three of them satisfy
the trace condition Tr(vτi ) = 0.

Proof. If vi (i in {1, 2, 3}) is a root of Lβ, then v(2t−1)(2t+1)
i + v2t−1

i + β = 0. Thus,
the vi’s are roots of a linear polynomial Lβ : x 7→ x22t + x2t + βx having four roots:
three non-zero roots (these vτi ’s) and zero. As it is a linear polynomial, it holds that
vτ1 + vτ2 + vτ3 = 0 so Tr

(
vτ1 + vτ2 + vτ3

)
= 0. The only possibilities for this to happen

are (up to permutation of the indices) the following.

• Tr(vτ1 ) = 0 and Tr(vτ2 ) = Tr(vτ3 ) = 1, so exactly one satisfies the trace
condition.
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• Tr(vτ1 ) = Tr(vτ2 ) = Tr(vτ3 ) = 0, so all three of them satisfy the trace condition.

This proves the lemma.

As a consequence of this lemma, we can claim that the set U0 of β 6= 1 such
that System (3.8) has no solution has the following structure:

U0 = {β, Lβ has no roots} ∪ {β 6= 1, Lβ has a unique root v, Tr(vτ ) 6= 0}. (3.9)

These two sets are disjoint, so the size of U0 (which is equal to Ω0) is the sum of
the sizes of these sets.

We know the size of the first set from Theorem 5:

|{β, Lβ has no roots}| = 2n + (−1)n+1

3 . (3.10)

However, finding the size of the second one requires more work. Recall that
Theorem 5 gives a necessary and sufficient condition for any element v to be the
unique root of some polynomial Lβ: it must hold that

Tr
(
(1 + v−1)τ

)
= 1. (3.11)

Therefore, the size of the second set in Equation (3.9) is equal to the size of V where

V = {v ∈ F2n\F2, Tr
(
(1 + v−1)τ

)
= 1, Tr(vτ ) = 1}. (3.12)

As x 7→ xτ is a bijection, the size of this set is the same as that of
B = {v ∈ F2n\F2, Tr(1 + v−1) = 1, Tr(v) = 1}

= {v ∈ F2n\F2, Tr(v−1) = Tr(1) + 1, Tr(v) = 1},
which is the same as that found in [BCC11]. Note in particular the presence of
Tr(1) in the trace condition v−1 must satisfy: it is reason of the alternating sign
depending on the parity of n in the size of V. For the sake of completeness, we
recall how the size can be computed here.

Recall the definition of the Kloosterman sum (Definition 2.2):

K(1)− 2 =
∑
x∈F

(−1)Tr(x+x−1)

= |F2n\F2| − 2× |{x ∈ F2n\F2,Tr(x+ x−1) = 1}|
= 2n − 2− 2× |{x ∈ F2n\F2,Tr(x+ x−1) = 1}|
= 2n − 2− 4× |{x ∈ F2n\F2,Tr(x) = 1,Tr(x−1) = 0}|.

If n is odd, Tr(1) = 1 so x is in B if and only if Tr(x) = 1 and Tr(x−1) = 0. In
the same way, if n is even then x is in B if and only if Tr(x) = 1 and Tr(x−1) = 1.
In the case where n is even, we have:

|{x ∈ F2n\F2,Tr(x) = Tr(x−1) = 1}|
= |{x ∈ F2n\F2,Tr(x) = 1}| − |{x ∈ F2n\F2,Tr(x) = 1,Tr(x−1) = 0}|
= 2n−1 − |{x ∈ F2n\F2,Tr(x) = 1,Tr(x−1) = 0}|.

We deduce the following from these observations.
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• If n is odd, then K(1) = 2n − 4× |B|.

• If n is even, then K(1) = 2n − 4× (2n−1 − |B|) = 4× |B| − 2n.

We therefore conclude that the size of V (which is equal to the size of B) is given
by:

|V| = 2n−2 + (−1)nK(1)
4 .

As a consequence, the number of b such that Gt(x + 1) + Gt(x) = b has no
solutions for b 6= 0, 1 is equal to Ω0 where

Ω0 = 2n + (−1)n+1

3 + 2n−2 + (−1)nK(1)
4 .

This concludes the third step of the proof. All that is left to do is to deduce the
whole spectrum, which is done in the next section.

3.2.5 Step 4: Extracting the Whole Differential Spectrum
Using the value of Ω0 found in the previous section, the values of δ(0) and δ(1) found
in Section 3.2.2 and the equations the spectrum must satisfy given by Lemma 2, we
compute the complete spectrum of Gt. It is given in the following theorem.

Theorem 7. Let Gt be the monomial x 7→ x2t−1 from F2n to itself where 3 does
not divide n, t = kn+1

3 and k = 1 or 2 is such that t is an integer. The function Gt
is a differentially 6-uniform permutation. Let K(1) be as defined in Definition 22.
The differential spectrum of Gt is {ω0, ω2, ω4, ω6} and is determined as follows:

• If n ≡ ±1 mod 6, then:

ω0 = 2n−2 + 2n + 1
3 − K(1)

4

ω2 = 3 · 2n−2 − 1
2 + 3 · K(1)

8
ω4 = 0

ω6 = 2n−2 + 1
6 − K(1)

8

• If n ≡ ±2 mod 6, then:

ω0 = 2n−2 + 2n − 1
3 + K(1)

4

ω2 = 3 ·
(
2n−3 − K(1)

8
)

ω4 = 1

ω6 = 2n−2 − 4
6 + K(1)

8
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Using Theorem 4 about symmetric functions, we also deduce the spectrum of
Gs with s = n− t+ 1 =

(
(3− k)n+ 2

)
/3.

Theorem 8. Let Gs be the monomial x 7→ x2s−1 from F2n to itself with s = (3−k)n+2
3

and k = 1 or 2 depending on n. The function Gs is differentially 6-uniform and is a
permutation if and only if n ≡ ±1 mod 6. Let K(1) be as defined in Definition 22.
The differential spectrum of Gs is {ω0, ω2, ω4, ω6} and is determined as follows:

• If n ≡ ±1 mod 6, then:

ω0 = 2n−2 + 2n + 1
3 − K(1)

4

ω2 = 3 · 2n−2 − 1
2 + 3 · K(1)

8
ω4 = 0

ω6 = 2n−2 + 1
6 − K(1)

8
• If n ≡ ±2 mod 6, then:

ω0 = 2n−2 + 2n − 4
3 + K(1)

4

ω2 = 3 ·
(
2n−3 − K(1)

8
)

+ 2

ω4 = 0

ω6 = 2n−2 − 4
6 + K(1)

8
Even though some of the quantities dealt with in these theorems are not integers

— for instance, in the first case, (2n−2 + 1)/6 is not an integer — the values of the
ωi are integers.

3.3 The Case t = (n− 1)/2

3.3.1 Statement of the Problem
Recall Conjecture 2 which states that the restricted spectrum of Gt for t = (n−1)/2
and for n odd is the same as that of G3.

This section is a proof of this conjecture, i.e. of Theorem 11. While the state-
ment of this theorem is essentially the same as the one for t = (kn + 1)/3 but
for another exponent, its proof turns out to be extremely different. Indeed, the
proof for t = (kn + 1)/3 relied on simplification of the system using Equation (4);
a method we cannot use this time.

Since gcd(2t−1, 2n−1) = 2gcd(n,t)−1 and gcd(n, (n−1)/2) = 1, Gt is a bijection:
its inverse is well defined and we denote it Γt:

Γt(x) = xτ ,
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where τ is as before the inverse of 2t− 1 modulo 2n− 1 and is given by the formula
in Theorem 1. Here, τ has the following value:

τ = −2− 2t+1.

Studying Γt gives us the differential spectrum of Gt because of Lemma 3. There-
fore, we do not look at the number of solutions of (x + 1)2t−1 + x2t−1 = b but to
that of (x+ 1)τ + xτ = b.

3.3.2 Step 1: Computing δ(0) and δ(1)

As Γt is a bijection, δ(0) = 0. δ(1) requires more computations but it turns out to
be the same as for Gt which was extracted in [Blo11], namely

δ(1) =
{

8, if n ≡ 0 mod 3
2, otherwise.

Lemma 8. The number δ(1) of solutions of Γt(x) + Γt(x + 1) = 1 is the same as
that of Gt(x) +Gt(x+ 1) = 1, namely 2gcd(t−1,n).

Proof. We know that Gt is a permutation, so Γt(x+ 1) + Γt(x) = 1 is equivalent to
Gt
(
Γt(x+ 1) + Γt(x)

)
= 1. Furthermore,

(
(x+ 1)τ + xτ

)2t−1 = 1
⇔ (x+ 1)2tτ + x2tτ = (x+ 1)τ + xτ

⇔ (x+ 1)τ+1 + xτ+1 = (x+ 1)τ + xτ

⇔ (x+ 1)τ (1 + x+ 1) + xτ (x+ 1) = 0
⇔
(
(x+ 1)τ−1 + xτ−1)x(x+ 1) = 0,

so this equations has δ(1) = N + 2 solutions where N is the number of solutions
x 6= 0, 1 of (x+ 1)τ−1 + xτ−1 = 0. Since 0,1 are not solutions of this equation, N is
exactly the number of solutions of the following one:

(x+ 1)τ−1 = xτ−1

⇔ (x+ 1)(τ−1)(2t−1) = x(τ−1)(2t−1)

⇔ (x+ 1)2−2t = x2−2t

⇔ (x+ 1)2t−1−1 + x2t−1−1 = 0.

Hence, N is equal to the δ(0) of Gt−1, i.e. 2gcd(t−1,n) − 2. As a consequence,
δ(1) = 2gcd(t−1,n).
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3.3.3 Step 2: Rewriting the Equation
Before else, note that 12t−1 + 02t−1 = (1 + 1)2t−1 + 12t−1 = 1 so x = 0 and x = 1
are not a solution of the equation unless b = 1. Since we shall look at the restricted
spectrum in this section (δ(0) and δ(1) have been computed separately), x is never
equal to 0 or 1. Thus, in the following calculations, we can safely multiply a fraction
by (x2 + x).

The differential in 1 for Γt can be rewritten in the following way:

Γt(x+ 1) + Γt(x) = (x+ 1)−2t+1−2 + x−2t+1−2

= 1
(x+ 1)2t+1+2 + 1

x2t+1+2

= x2t+1+2 + (x+ 1)2t+1+2

(x2 + x)2t+1+2

= x2t+1+2 + (x+ 1)2t+1(x2 + 1)
(x2 + x)2t+1+2

= x2t+1+2 + (x2t+1 + 1)(x2 + 1)
(x2 + x)2t+1+2

= x2t+1+2 + x2t+1+2 + x2t+1 + x2 + 1
(x2 + x)2t+1+2

= x2t+1 + x2 + 1
(x2 + x)2t+1+2 .

Consequently, δ(b), the number of solutions of Γt(x + 1) + Γt(x) = b for b in
F2n\F2, is equal to the number of solutions of:

x2t+1 + x2 + 1
(x2 + x)2t+1+2 = b.

The number of solutions of the following equation is also equal to δ(b):

x2t+1 + x2 + 1 + b(x2 + x)2t+1+2 = 0.

If we let c be b2n−1 , we can further simplify by taking the “square root” of the
equation. We obtain a new polynomial which we call Pc and whose number of roots
for a given b is equal to δ(b2n−1):

Pc(x) = x2t + x+ 1 + c(x2 + x)2t+1. (3.13)

Since x 7→ x2n−1 is a permutation mapping 0 and 1 to themselves, finding the
number of c 6= 0, 1 such that the previous equation has k roots will also give Ωk.

Our aim is now to find the number of roots of Pc in F2n\F2, i.e. the number of
solutions of the following equation for all c in F2n\F2

Pc(x) = 0.
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We then go further into the modification of this problem to make it easier to
solve. First, we introduce a new variable, y = x2 + x. To see this, we can use the
following telescopic sum:

t−1∑
i=0

(x2 + x)2i =
t−1∑
i=0

x2i+1 + x2i

= x2t + x.

Recall that for the proofs of the spectra of both x 7→ x7 and x 7→ x2t−1 for t =
(kn+ 1)/3, we performed the same substitution.

Note however that this change of variable implies that Tr(y) = 0. Indeed, it is
a condition which is necessary (and sufficient) for the existence of an x such that
x2 + x + y = 0 (see [Che82] for instance). Note also that if y 6= 0 then x = 0 and
x = 1 is impossible.

Hence, δ(b) for b not in F2 is equal to two times the number of solutions of the
following system in F∗2n : {

Ac(y) = 0
Tr(y) = 0, (3.14)

where Ac is defined by:

Ac(y) = cy2t+1 +
t−1∑
i=0

y2i + 1.

Our aim is now, as explained in the sketch of proof, to rewrite this system so
that the polynomial La(x) = x2t+1 + x+ a is used. A crucial step toward this goal
is the following lemma.

Lemma 9. Consider the following system of equations:

{
Bc(y) = 0

Tr(cy2t+1) = 1, (3.15)

where
Bc(y) = c2t+1

y2t+1 + cy + 1.

Then Equations (3.14) and (3.15) have exactly the same number of solutions
in F∗2n.

Proof. First of all, let us compute φc(y) = Ac(y)+Ac(y)2t+1 . As we shall see, Bc(y)
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is closely related to this quantity. The value of φc(y) can be expressed as follows:

φc(y) = Ac(y) +Ac(y)2t+1

= cy2t+1 +
t−1∑
i=0

y2i + 1 +
(
cy2t+1 +

t−1∑
i=0

y2i + 1
)2t+1

= cy2t+1 +
t−1∑
i=0

y2i + c2t+1
y(2t+1)2t+1 +

t−1∑
i=0

y2i+t+1

= cy2t+1 + c2t+1
y1+2t+1 +

t−1∑
i=0

y2i +
2t∑

i=t+1
y2i

= cy2t+1 + c2t+1
y2t+1+1 + Tr(y) + y2t

= y2t(c2t+1
y2t+1 + cy + 1

)
+ Tr(y)

= y2tBc(y) + Tr(y).

We shall prove that the sets of the solutions of Systems (3.14) and (3.15) are
included in each other and thus equal.

• First, let y be a solution of System (3.14). Then Ac(y) = 0 and Tr(y) = 0.
This implies that φc(y) = 0, and that Bc(y) = 0. Furthermore, Tr(Ac(y)) = 0
and Tr(Ac(y)) = Tr(cy2t+1) + t×Tr(y) + Tr(1) = 0. Thus, we do have that
Tr(cy2t+1) = Tr(1) = 1 (recall that n is odd, so Tr(1) = 1). In other words,
y is also a solution of System (3.15).

• Now suppose that y is a solution of System (3.15) and let us prove that it
has to be a solution of System (3.14). It holds that Bc(y) = 0 so φc(y) =
Tr(y) and y2tBc(y) = c2t+1

y2t+1+1 + cy2t+1 + y2t = 0. Hence, Tr(y2t) =
Tr(c2t+1

y2t+1+1) + Tr(cy2t+1).

Furthermore, Tr(a2k) = Tr(a) for any a and k. Thus, Tr(y2k) = Tr(y) and
Tr(cy2t+1) = Tr((cy2t+1)2t+1) = Tr(c2t+1

y2t+1+1). From these observations,
we deduce that Tr(y) = 2 × Tr(cy2t+1) = 0. The condition on the trace
thus yields. Besides, this means that if y is a solution of System (3.15) then
Tr(y) = 0, so Ac(y) +Ac(y)2t+1 = y2tBc(y) = 0; which implies the following:

0 = Ac(y) +Ac(y)2t+1

= Ac(y)
(
1 +Ac(y)2t+1−1).

There are two possibilities.

– Either Ac(y) = 0, in which case y is a solution of System (3.14) since we
already proved that Tr(y) = 0.
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– Either Ac(y)2t+1−1 = 1, which implies the following4:

Ac(y)2t+1−1 = 1
=⇒ Ac(y) = 1

=⇒ cy2t+1 +
t−1∑
i=0

y2i + 1 = 1

=⇒ cy2t+1 +
t−1∑
i=0

y2i = 0

=⇒ Tr(cy2t+1) + t×Tr(y) = 0.

Since we already proved that if y is a solution of System (3.15) then
Tr(y) = 0, we have a contradiction. Indeed, it must hold that Tr(cy2t+1) =
1 by definition of the equation system but the above equation implies that
Tr(cy2t+1) = 0. Therefore, if y is a solution of System (3.15) then we
cannot have Ac(y) = 1. The only possibility left is Ac(y) = 0.

If y is a solution of System (3.14) then it is a solution of System (3.15) and
if y is a solution of System (3.15) then it is a solution of System (3.14). In other
words, these two systems have exactly the same solutions and, in particular, the
same number of solutions; which proves the lemma.

Polynomial Bc(y) = c2t+1
y2t+1+cy+1 looks like La(x) = x2t+1+x+a. Actually,

the only difference between these polynomials is a change of variable we shall give
now. But before that, we note that in our case gcd(2t + 1, 2n − 1) = 1 and give the
inverse of 2t + 1 modulo 2n − 1.

Lemma 10. The inverse of (2t + 1) modulo (2n − 1) is 2× (1− 2t). In particular,
it holds that:

(2t + 1)× 2× (2t − 1) = −1.

Proof. The proof is straight-forward, we simply check:

(2t + 1)× 2× (−2t + 1) ≡ −22t+1 − 2t+1 + 2t+1 + 2 mod 2n − 1
≡ −2n + 2 mod 2n − 1
≡ 1 mod 2n − 1.

This proves the lemma.

4x 7→ x2t+1−1 is a permutation since gcd(2t+1 − 1, 2n − 1) = 2gcd(n,t+1) − 1 and gcd(n, t+ 1) =
gcd(n, n+1

2 ) = gcd(n+1
2 , n−1

2 ) = 1.
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Let v = c2−2t+1
y, i.e. y = vc2t+1−2. Then Bc(y) can be rewritten as follows:

Bc(y) = c2t+1 · (vc2t+1−2)2t+1 + c · vc2t+1−2 + 1
= v2t+1c(2t+1−2)(2t+1)+2t+1 + vc2t+1−1 + 1
= v2t+1c−1+2t+1+2t+1 + vc2t+1−1 + 1
= c2t+1−1(v2t+1 + v + c1−2t+1)
= β−1Lβ(v)

where β = c1−2t+1 . Note that c 7→ c1−2t+1 is a bijection because gcd(2t+1 − 1, 2n −
1) = 2gcd((n+1)/2,n) − 1 = 1. Therefore, Bc(y) = 0 if and only if Lβ(v) = 0. Besides,
cy2t+1 (whose trace corresponds to the trace condition) becomes

cy2t+1 = c · (vc2t+1−1)2t+1

= c · v2t+1c−1

= v2t+1.

As a consequence of this change of variable, the following theorem holds.

Theorem 9. Consider the following system of equations:{
Lβ(v) = 0

Tr(v2t+1) = 1, (3.16)

where
Lβ(v) = v2t+1 + v + β

Then Equations (3.15) and (3.16) have exactly the same number of solutions in
F∗2n.

Remark 1. The trace condition Tr(v2t+1) = 1 is equivalent in this context to
Tr(v) = 1 + Tr(β) as Lβ(v) = 0 imposes that Tr(v) = Tr(β) + Tr(v2t+1).

This concludes the second step of the proof. If we look at the general structure
of the system we described in our proof sketch (Section 3.1) which we recall here{

Lβ(v) = 0
Tr(vq) = ε,

we find that System (3.16) is as expected, with q = 2t + 1 and ε = 1.

3.3.4 Step 3 (Beginning): Counting a First Set of Non-Solutions
The system we obtained in the previous section uses again the polynomial Lβ. We
already know from [BCC10b] (Theorem 4) that Γt is locally differentially 6-uniform,
so our general approach will be the same as before: compute the number of b 6= 0, 1
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such that where System (3.16) has no solution (Ω0) and deduce the whole spectrum
from it. There are three possibilities for an element β to be such that System (3.16)
has no solutions.

1. Either Lβ has no root.

2. Or Lβ has a unique root v0 such that Tr(vτ0 ) 6= 0.

3. Or Lβ has three roots v1, v2, v3, none of which satisfies the trace condition:
Tr(v2t+1

1 ) = Tr(v2t+1
2 ) = Tr(v2t+1

3 ) 6= 1 or, equivalently, Tr(v1) = Tr(v2) =
Tr(v3) 6= 1 + Tr(β).

From Theorem 5, we know that the number of β such that Lβ has no roots
is equal to (2n + 1)/3 (n is odd). However, unlike in the previous case, we do
not have Tr(vτ ) = 0 as a trace condition; we have Tr(v−τ ) = 1 instead since
−τ = 2 + 2t+1 = 2 · (2t + 1). The arguments we use to compute the number
of elements corresponding to cases 2 and 3 in the previous enumeration are thus
different. We shall prove that no β fits in the third category and then compute the
number of β in the second one.

Lemma 11. If Lβ has three roots v1, v2 and v3, then exactly one or three of
these roots satisfy the trace condition Tr(vi) = 1 + Tr(β) (which is equivalent to
Tr(v2t+1

i ) = 1).

Proof. Let β be such that it has three roots v1, v2 and v3. First, we shall prove that
v−1

1 + v−1
2 + v−1

3 = 1 and then, using this fact, that Tr(v1 + v2 + v3) = 1 + Tr(β)
which will imply the lemma.

First, let us prove that v−1
1 + v−1

2 + v−1
3 = 1. If the vi’s are roots of Lβ, then

Lβ : x 7→ x22t + x2t + βx has four roots: vτ1 , vτ2 , vτ3 (none of which is equal to zero)
and 0. We deduce the following:

0 = vτ1 + vτ2 + vτ3

= v
−2(2t+1)
1 + v

−2(2t+1)
2 + v

−2(2t+1)
3

=
(
v
−(2t+1)
1 + v

−(2t+1)
2 + v

−(2t+1)
3

)2
.

(3.17)

Now recall that v2t+1
i + vi + β = 0 and that vi 6= 0. We can divide the left

hand-side by v2t+1
i to obtain

1 + v−2t
i + βv

−(2t+1)
i = 0

and then sum these equations over i, which yields

0 =
(
1 + v−2t

1 + βv
−(2t+1)
1

)
+
(
1 + v−2t

2 + βv
−(2t+1)
2

)
+
(
1 + v−2t

3 + βv
−(2t+1)
3

)
= 1 +

(
v−1

1 + v−1
2 + v−1

3
)2t + β

(
v
−(2t+1)
1 + v

−(2t+1)
2 + v

−(2t+1)
3

)
.
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We know from Equation (3.17) that v−(2t+1)
1 + v

−(2t+1)
2 + v

−(2t+1)
3 = 0, so

v−1
1 + v−1

2 + v−1
3 = 1.

Now let us deduce from this that Tr(v1 + v2 + v3) = 1 + Tr(β). The vi’s are
such that v2t+1

i + vi + β = 0 and are not equal to zero, so we can divide the left
hand-side by vi to obtain

v2t
i + 1 + β

vi
= 0

which, when summed over i, gives

0 = v2t
1 + 1 + β

v1
+ v2t

2 + 1 + β

v2
+ v2t

3 + 1 + β

v3

= (v1 + v2 + v3)2t + 1 + β
( 1
v1

+ 1
v2

+ 1
v3

)
.

If we take the trace of this equality, we find

Tr(v1 + v2 + v3) = 1 + Tr
(
β(v−1

1 + v−1
2 + v−1

3 )
)
.

As we proved that v−1
1 + v−1

2 + v−1
3 = 1, this gives

Tr(v1 + v2 + v3) = 1 + Tr(β)

which means that an odd number of the vi’s satisfy the trace condition. As only
1 and 3 are odd in [0, 3], we have exactly one or three vi’s satisfying the trace
condition, an observation which concludes the proof.

All that remains to do is to find the number of β that are such that Lβ has a
unique solution v which do not satisfy the trace condition. To achieve this, we shall
find an explicit expression giving all the elements v in F∗2n such that v is the unique
root of some Lβ.

3.3.5 An Explicit Expression of the Unique Roots of x2t+1 + x+ β

In this section, we shall give a proof of the following theorem which gives a general
expression for the elements v in F∗2n that are the unique roots of a polynomial
Lβ : x 7→ x2t+1 + x+ β for some β where t = (n− 1)/2.

Definition 23. We denote F0 the set of the elements of F∗2n that have a trace equal
to zero:

F0 = {l ∈ F∗2n , Tr(l) = 0}.

Theorem 10. The set of v in F∗2n such that v is the unique root of a polynomial
Lβ : x 7→ x2t+1 + x+ β for some β is the image by Λ′ of F0 by

Λ′ :

 F∗2n → F2n

l 7→
(∑t

i=1 l
2i−1

)−1
.
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Remark 2. Proposition 4 of [HK08] gives an explicit expression for the root of La
when La has a unique zero. This expression gives the unique root v as a function
of a but it involves a sequence of polynomials and is too cumbersome to use in our
context. Note however that our approach requires a particular value of t while the
formula found by Helleseth and Kholosha always works.

The rest of this section, dedicated to the proof of Theorem 10, is organised as
follows.

1. Find that the elements v that are the roots of Lβ such that Lβ has three roots
are the image of F0 by a function Λ : l 7→ 1/Λ′(l).

2. Explain why the images of F0 by Λ and by Λ′ : l 7→ 1/Λ(l) are disjoint.

3. Deduce Theorem 10 using that the set of the roots of polynomials Lβ such that
Lβ has a unique root is the complement of the set of the roots of polynomials
Lβ having three roots.

Lemma 12. The set of v in F∗2n such that v is a root of some Lβ which has three
non-zero roots is the image by Λ of F0 where

Λ :
{

F2n → F2n

l 7→
∑t
i=1 l

2i−1.

Furthermore, if we let α, α+ 1, be the solutions of x+ x2 = l, we have that the
three roots of Lβ are 

v1 = Λ(l)
v2 = Λ(l) · α1−2t+1

v3 = Λ(l) · (α+ 1)1−2t+1
.

Proof. We proceed by showing first that if x is a root of a polynomial Lβ having
three roots, then x = Λ(l) for some l in F0. In a second part, we prove the other
implication, i.e. that if v1 = Λ(l) for some l in F0 then there exists two other values
v2 and v3 that are the roots of the same polynomial Lβ. Explicit expressions for v2
and v3 as a function of l are also provided.

• We already know that Lβ has either zero, one or three roots. As a consequence,
v is a root of Lβ with Lβ having three roots if and only if there is γ 6= 0, 1
such that v2t+1 + v = (γv)2t+1 + γv.

v2t+1 + v = (γv)2t+1 + γv

⇔ v2t+1(1 + γ2t+1) = v(1 + γ)

⇔ v2t = 1 + γ

1 + γ2t+1 .
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Let α be such that γ = α1−2t+1 . As γ 6= 0, 1, α is also different from 0,1.
Besides, this change of variable is well defined because gcd(2t+1−1, 2n−1) = 1
in our case.

v2t = 1 + α1−2t+1

1 + α(2t+1)(1−2t+1)

=⇒ v2t = 1 + α1−2t+1

1 + α−2t

=⇒ v2t = α2t+1 + α

α2t+1 + α2t

=⇒ v = α2 + α2t+1

α2 + α

=⇒ v =
t∑
i=1

(α+ α2)2i−1 = Λ(α+ α2)

The trace of α + α2 is always equal to zero. Therefore, there must exist l in
F0 such that v = Λ(l). This concludes the first part.

• Let v1 = Λ(l) for some l in F0. We prove here that there exists two other
values v2 and v3 such that Lβ(v1) = Lβ(v2) = Lβ(v3) = 0.

Since l is in F0, there exists α such that l = α + α2 = (α + 1) + (α + 1)2.
The following proves that v1 = Λ(α + α2), v2 = α1−2t+1Λ(α + α2) and v3 =
(α+ 1)1−2t+1Λ(α+ α2) are such that v2t+1

1 + v1 = v2t+1
2 + v2 = v2t+1

3 + v3.

v2t+1
2 + v2 =

(
α1−2t+1Λ(α+ α2)

)2t+1 + α1−2t+1Λ(α+ α2)
= α−2tΛ(α+ α2)2t+1 + α1−2t+1Λ(α+ α2)
= α−2tΛ(α+ α2)

(
Λ(α+ α2)2t + α1−2t)

= α−2tΛ(α+ α2)
(
Λ(α+ α2) + α2t+1−1)2t .

In the same way,

v2t+1
3 + v3 = (α+ 1)−2tΛ(α+ α2)

(
Λ(α+ α2) + (α+ 1)2t+1−1)2t .
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Let us now look at Λ(α+α2)+α2t+1−1 using another expression of Λ(α+α2):

Λ(α+ α2) + α2t+1−1 = α2 + α2t+1

α+ α2 + α2t+1

α

= α2 + α2t+1 + (1 + α)α2t+1

α+ α2

= α
α+ α2t+1

α+ α2

= α
t∑
i=0

(α+ α2)2i−1

= α
( t∑
i=1

(α+ α2)2i−1 + 1
)
.

Therefore, v2t+1
2 + v2 can be written

v2t+1
2 + v2 = α−2tΛ(α+ α2)

(
Λ(α+ α2) + α2t+1−1)2t

= α−2tΛ(α+ α2)
(
α
(
Λ(α+ α2) + 1

))2t

= Λ(α+ α2)
(
Λ(α+ α2)2t + 1

)
= v2t+1

1 + v1.

If now compute Λ(α+ α2) + (α+ 1)2t+1−1, we find the same kind of result:

Λ(α+ α2) + (α+ 1)2t+1−1 = α2 + α2t+1

α+ α2 + α2t+1 + 1
α+ 1

= α2 + α2t+1 + α(1 + α2t+1)
α+ α2

= (α+ 1)(α+ α2t+1)
α+ α2

= (α+ 1)
t∑
i=0

(α+ α2)2i−1

= (α+ 1)
( t∑
i=1

(α+ α2)2i−1 + 1
)
,

which implies that v2t+1
3 + v3 = Λ(α + α2)2t+1 + Λ(α + α2). This concludes

the proof.

Another way to state Lemma 12 is to say that the set of the elements v in F∗2n
which are roots of a polynomial Lβ having three roots is the image by Λ of F0. Let
us now look at some interesting properties of Λ.
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Lemma 13. The following is true for any l of F0:

Λ(l)2t = l1−2t(1 + Λ(l)).

Proof. It holds that Λ(l)2t = ∑t
i=1 l

(2i−1)2t . We deduce that Λ(l)2t = l−2t∑2t
i=t+1 l

2i .
Since 2t = n− 1 and Tr(l) = 0, we have this:

Λ(l)2t = l−2t
2t∑

i=t+1
l2
i

= l−2t(
n−1∑
i=0

l2
i +

t∑
i=1

l2
i + l2

0)

= l−2t(Tr(l) + l + lΛ(l))
= l1−2t(1 + Λ(l)).

This proves the lemma.

Lemma 14. Λ is one-to-one.

Proof. Suppose that there is l and m such that Λ(l) = Λ(m).

Λ(l) = Λ(m) =⇒ Λ(l)2t = Λ(m)2t

=⇒ l1−2t(1 + Λ(l)) = m1−2t(1 + Λ(m))

=⇒
( l
m

)1−2t = 1 + Λ(m)
1 + Λ(l)

=⇒
( l
m

)1−2t = 1.

Since x 7→ x1−2t is a bijection,5 this implies that l = m.

Remark 3. Every element x of F2n\F2 is the root of exactly one polynomial Lβ
(simply set β = x2t+1 +x). Therefore, if we look at the number µk of β such that Lβ
has at least k roots in F2n\F2, we find that µ1+3µ3 = 2n−2 and µ0+µ1+µ3 = 2n−2.
Furthermore, since Λ is an injection over F0, we have that 3µ3 = |F0| = 2n−1 − 1.
Hence, µ1 = 2n−1−1 and µ0 = (2n−2)/3. Since L1 has no roots, we can deduce the
values of the coefficients M0,M1 and M3 for the case t = (n − 1)/2 of Theorem 5
independently from it.

Lemma 15. The images of F0 by Λ and Λ′ : l 7→ 1/Λ(l) are disjoint.

Proof. We proceed by contradiction. Suppose m in F0 is such that Λ(m) is the
inverse of some Λ(l) (where l is also in F0), i.e. Λ(l)Λ(m) = 1.

Let λ(l) = l ·Λ(l) = ∑t
i=1 l

2i . Then Λ(l) ·Λ(m) = 1 can also be written as follows
for l, n in F0.

5Recall that Gt : x 7→ x2t−1 is a bijection.
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lm = λ(l)λ(m)

=
( t∑
i=1

l2
i
)( t∑

i=1
m2i

)

=
t∑
i=1

i∑
j=1

l2
i−j
m2j .

In order to have the sum of index j starting at zero, we add the value ∑t
i=1 l

2im
and obtain:

λ(l)λ(m) =
t∑
i=1

i∑
j=0

l2
i−j
m2j +

t∑
i=1

l2
i
m.

In the same way, we add lm to the double sum to be able to start it from i = 0
and to that on the right to be able to start also from i = 0. In doing so and since
lm+ lm = 0, we have:

λ(l)λ(m) =
t∑
i=0

i∑
j=0

l2
i−j
m2j +

t∑
i=0

l2
i
m.

We know that λ(l)λ(m) = lm, so:
t∑
i=0

i∑
j=0

l2
i−j
m2j = lm+

t∑
i=0

l2
i
m

= mλ(l).

As the roles of the variables l and m are symmetric, we can derive that lλ(m)
is equal to same double sum. Therefore, mλ(l) = lλ(m). Hence:

l · λ(m) = m · λ(l)

⇔ λ(l)
l

= λ(m)
m

⇔ Λ(l) = Λ(m).

Thus, Λ(l) is its own inverse. The only element of F2n satisfying this is 1 and Λ(l)
is actually never equal to it. Indeed, suppose Λ(l) = 1. Then:

t∑
i=1

l2
i−1 = 1 =⇒

t∑
i=1

l2
i = l =⇒

t∑
i=0

l2
i = 0

=⇒
t∑
i=0

l2
i +

( t∑
i=0

l2
i
)2t

=
2t∑
i=0

l2
i + l2

t = 0

=⇒ l2
t = Tr(l) = 0.

This does not happen since l is in F0. We hence do have a contradiction, which
concludes the proof.
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We now have all the lemmas needed to prove Theorem 10. Observe that every
element v in F2n\F2 is the root of exactly one polynomial Lβ(v) (because β =
v2t+1 + v always works). Therefore, F2n\F2 is equal to the following union of sets:

F2n\F2 = S1 ∪ S3

where

S1 = {v ∈ F2n\F2,∃β ∈ F2n\F2, Lβ(v) = 0 and Lβ has one root}
S3 = {v ∈ F2n\F2,∃β ∈ F2n\F2, Lβ(v) = 0 and Lβ has three roots}.

As Λ is an injection of F0 which never maps any element to zero, Λ′ : l 7→
1/Λ(l) is also an injection. Thus, the image of F0 by both these functions is of size
2n−1 − 1 = |F2n\F2|/2. Furthermore, these images are disjoint (see Lemma 15). If
we let I be the image of F0 by Λ and I ′ be the image of F0 by Λ′ then

F2n\F2 = I ∪ I ′

and the union is disjoint.
We know from Lemma 12 that S3 = I, so we can conclude that S1 = I ′; which

is precisely what we intended to prove.

3.3.6 Step 3 (End): Computing Ω0

Now that we have an explicit expression of the elements v in F2n\F2 such that
Lβ(v) = 0 and Lβ has a unique root, we can compute the number of unique solutions
which do not satisfy the trace condition Tr(v2t+1) = 1. Recall that Theorem 10,
proved in the previous section, gives an expression for such v: there is l in F0 such
that v = Λ(l)−1. Therefore, the set of the unique roots of some Lβ which do not
satisfy the trace condition is

B = {v ∈ F∗2n , ∃l ∈ F∗2n , Tr(l) = 0, v = Λ(l)−1, Tr
(
Λ(l)−2t−1) 6= 1}

and its size is

|B| = {l ∈ F∗2n , Tr(l) = 0, Tr
(
Λ(l)−2t−1) 6= 1}.

Lemma 16. The following equality is true for any l in F0:

Tr
(
Λ(l)−2t−1) = 1 + Tr

( 1
l · Λ(l))

)
.

Proof. The proof is straight-forward in the sense that it consists only in computa-
tions. First of all, recall that from Lemma 13, we have: Λ(l)2t = l1−2t(1 + Λ(l)) for
any l in F0.
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As a consequence, we obtain:

Λ(l)−1−2t = 1
Λ(l)2tΛ(l)

= 1
l1−2t(1 + Λ(l))Λ(l)

= l2
t−1

Λ(l)(1 + Λ(l))

= l2
t−1

Λ(l) + l2
t−1

1 + Λ(l) .

Thus, if we apply the trace to this equality, we obtain the following:

Tr(Λ(l)−2t−1) = Tr
( l2t−1

Λ(l) + l2
t−1

1 + Λ(l)
)

= Tr
( l2t−1

Λ(l)
)

+ Tr
( 1

Λ(l)2t
)

= Tr
( l2t−1 + 1

Λ(l)
)
.

We then find another expression for l2t−1 + 1:

1 + l2
t−1 = l−1(l + l2

t)

= l−1
t−1∑
i=0

(l + l2)2i

= l−1(lΛ(l) + l2
−1Λ(l2−1)

)
= Λ(l) + l2

−1−1Λ(l)2−1
.

Using this, we rewrite our expression of Tr(Λ(l)−1−2t+1):

Tr(Λ(l)−1−2t+1) = Tr
(Λ(l) + l2

−1−1Λ(l)2−1

Λ(l)
)

= Tr(1) + Tr(l2−1−1Λ(l)2−1−1)
= 1 + Tr(l−1Λ(l)−1).

Indeed, Tr(1) = 1 as n is odd. This concludes the proof.

Thanks to this lemma, we deduce a new expression of the size of the set B:

|B| = {l ∈ F∗2n , Tr(l) = 0, Tr
(
(l · Λ(l))−1) 6= 0}.
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Note that l 7→ l ·Λ(l) is injective over F0. Indeed, suppose that l ·Λ(l) = m·Λ(m)
for l,m in F0. Then:

l · Λ(l) = m · Λ(m)
=⇒ l2

tΛ(l)2t = m2tΛ(m)2t

=⇒ l2
t
l1−2t(1 + Λ(l)) = m2tm1−2t(1 + Λ(l))

=⇒ l + l · Λ(l) = m+m · Λ(m)
=⇒ l = m.

In order to compute the size of the set B, we split our reasoning into two cases
depending on the parity of t.

• If t is odd. In this case, Tr(l ·Λ(l)) = Tr(l) so Tr(l) = 0⇔ Tr(l ·Λ(l)) = 0.
Thus, we can write the following:

|B| = |{l ∈ F∗2n ,Tr(l · Λ(l)) = 0,Tr((l · Λ(l))−1) = 1}|.

As l 7→ l · Λ(l) is a bijection over F0 in this case (it maps it to itself and is
injective), we have

|B| = |{l′ ∈ F∗2n ,Tr(l′) = 0,Tr(l′)−1) = 1}|.

• If t is even. If t is even, then the trace of l ·Λ(l) is equal to zero for any l in
F∗2n (recall that Tr(l ·Λ(l)) = ∑t

i=1 Tr(l)). Furthermore, l 7→ l ·Λ(l) is in this
case 2-to-1 over F2n :

l · Λ(l) = 0 =⇒
t∑
i=1

l2
i = 0

=⇒
t∑
i=1

l2
i +

( t∑
i=1

l2
i
)2t

= 0

=⇒
2t∑
i=1

l2
i = 0

=⇒ Tr(l) = l.

The function l 7→ l · Λ(l) is linear and both l = 0 and l = 1 are indeed such
that l · Λ(l) = 0. Besides, since the function is an injection of F0 and maps l
and l + 1 to the same image, we have:

{l ∈ F2n\F2,Tr
(
(l · Λ(l)−1)

)
= 1}

= {l ∈ F2n\F2,Tr(l) = 0, Tr
(
(l · Λ(l)−1)

)
= 1}

∪ {l ∈ F2n\F2,Tr(l) = 1, Tr
(
(l · Λ(l)−1)

)
= 1}

= {l′ ∈ F2n\F2,Tr(l′) = 0, Tr(l′−1) = 1}
∪ {l ∈ F2n\F2,Tr(l′) = 1, Tr(l′−1) = 1}
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where we let as before l′ = l · Λ(l).
Since the size of B is given by the size of the intersection of

{l ∈ F2n\F2,Tr(l) = 0}

and
{l ∈ F2n\F2,Tr

(
(l · Λ(l))−1) = 0},

we also have
|B| = |{l′ ∈ F∗2n ,Tr(l′) = 0,Tr(l′)−1) = 1}|.

In both case, we obtain for different reasons that the size of |B| is that of the
following set

|B| = |{l′ ∈ F∗2n ,Tr(l′) = 0,Tr(l′)−1) = 1}|
which we shall compute in the same way as in [BCC11].

Recall the definition of the Kloosterman sum K(1) (Definition 22). By removing
x = 0, 1 from the sum, we have

K(1)− 2 =
∑

x∈F2n\F2

(−1)Tr(x+x−1)

= |{x ∈ F2n\F2,Tr(x+ x−1) = 0}| − |{x ∈ F2n\F2,Tr(x+ x−1) = 1}|.

As these two sets are disjoint and their union is the whole set F2n\F2, we have

K(1)− 2 = |F2n\F2| − 2× |{x ∈ F2n\F2,Tr(x+ x−1) = 1}|
= 2n − 2− 2× |{x ∈ F2n\F2,Tr(x+ x−1) = 1}|.

Furthermore, in {x ∈ F2n\F2,Tr(x + x−1) = 1}, each x appears twice (once
when we look at it directly and once when we look at its inverse). Thus,

K(1) = 2n − 4× |{x ∈ F2n\F2,Tr(x) = 0, Tr(x−1) = 1}|,

which means that
K(1) = 2n − 4× |B|.

Therefore, the size of B is given by the following formula:

|B| = 2n−2 − K(1)
4

which allows us to finally give an expression of the number Ω0 of β in F2n\F2 such
that System (3.16) has no solutions:

Ω0 = 2n + 1
3 + 2n−2 − K(1)

4 .

The rest of the spectrum can be derived using the values we found in Section 3.3.2
for δ(0) and δ(1) and the equalities in Lemma 3. We give the full spectrum in the
next section.
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3.3.7 Step 4: Extracting the Whole Differential Spectrum

As for t = (kn + 1)/3, we use the value of Ω0 found in the previous section, the
values of δ(0) and δ(1) found in section 3.3.2 and the equations the spectrum must
satisfy given by Lemma 2, we compute the complete spectrum of Gt. It is given in
the following theorem.

Theorem 11. Let Gt be the monomial x 7→ x2t−1 from F2n to itself with t = n−1
2

and n odd. The function Gt is always a locally differentially 6-uniform permutation
and is differentially 6- or 8-uniform depending on n. Let K(1) be as defined in Def-
inition 22. The differential spectrum of Gt is {ω0, ω2, ω4, ω6, ω8} and is determined
as follows:

• If n ≡ ±1 mod 6, then:

ω0 = 2n−2 + 2n + 1
3 − K(1)

4

ω2 = 3 · 2n−2 − 1
2 + 3 · K(1)

8
ω4 = 0

ω6 = 2n−2 + 1
6 − K(1)

8
ω8 = 0

• If n ≡ 3 mod 6, then:

ω0 = 2n−2 + 2n + 4
3 − K(1)

4

ω2 = 3 ·
(
2n−3 + K(1)

8
)

ω4 = 0

ω6 = 2n−2 − 5
6 − K(1)

8
ω8 = 1

Again, we use Theorem 4 to deduce the spectrum of Gs with s = n − t + 1 =
(n+ 3)/2 for odd n.

Theorem 12. Let Gs be the monomial x 7→ x2s−1 from F2n to itself with t = (n+
3)/2 and n odd. The function Gs is differentially 6-uniform and it is a permutation
if and only if n ≡ ±1 mod 6. Let K(1) be as defined in Definition 22. The
differential spectrum of Gt is {ω0, ω2, ω4, ω6} and is determined as follows:
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• If n ≡ ±1 mod 6, then:

ω0 = 2n−2 + 2n + 1
3 − K(1)

4

ω2 = 3 · 2n−2 − 1
2 + 3 · K(1)

8
ω4 = 0

ω6 = 2n−2 + 1
6 − K(1)

8

• If n ≡ 3 mod 6, then:

ω0 = 2n−2 + 2n + 1
3 − K(1)

4

ω2 = 3 ·
(
2n−3 + K(1)

8
)

+ 1

ω4 = 0

ω6 = 2n−2 + 1
6 − K(1)

8

As before, the ωi are always integers due to the properties of the Kloosterman
sum.





Chapter 4

General Remarks

In this chapter, we present several observations we made while investigating the
differential properties of differentially 6-uniform power functions. In particular, we
discuss the connexions between differential spectrum and Dickson polynomials in
Section 4.1. Then, we formulate some conjectures about the differential spectra of
all differentially 6-uniform power functions in Section 4.2. A study of the resilience
against attacks other than differential provided by the the monomials studied is
given in Section 4.3. At last, we observe an interesting connexion between the
equations used to extract the spectrum of Gt and Gt+1 for any t in Section 4.4.

4.1 On Reversed Dickson Polynomials

4.1.1 Definitions

In this section, we emphasize some relation between the problems studied in the
previous chapter and the Dickson polynomials. Dickson polynomials where intro-
duced by Dickson in [Dic96]. Their study lead to the definition of the so-called
reversed Dickson polynomials in [HMSY09]. Dickson polynomials are defined in Z
and in any finite field Fpk but, in this section, we shall give all the definitions and
expressions in F2n .

Definition 24. The Dickson polynomial of degree n is a bi-variate polynomial
Dn(z1, z2) such that for any elements pair of elements (x1, x2) in F2n, the following
equality holds:

xn1 + xn2 = Dn(x1 + x2, x1x2).

An explicit expression of these polynomials is given by Waring’s formula:

Dn(x, y) =
bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−y)ixn−2i (4.1)

49
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where the coefficients are to be taken modulo 2 since we consider variables in F2n .
They also satisfy a recurrence relation:

D0(x, y) = 0,
D1(x, y) = x,
Dn(x, y) = xDn−1(x, y) + yDn−2(x, y), for n ≥ 2.

The polynomials x 7→ Dn(x, a) for fixed values of a have been extensively studied
(a reference on this topic is [LMT93]). However, it is only in 2009 that Hou et al.
introduced the reversed Dickson polynomials which we denote RDn:

RDn(y) = Dn(1, y).

These also satisfy a recurrence, namely
RD0(y) = 0
RD1(y) = 1
RDm(y) = RDm−1(y) + y ·RDm−2(y).

(4.2)

Reversed Dickson polynomials are “stable” within cyclotomic classes of expo-
nents e ≡ 2id mod (2n − 1), which means:

De(1, x) =
(
Dd(1, x)

)2i
.

4.1.2 Connexions Between Reversed Dickson and Differential Spectra
As Hou et al. pointed out in their paper, these polynomials have a very close relation
with the differential spectrum. Indeed, the differential spectrum of Fd : x 7→ xd is
defined by counting the solutions of the equation

(x+ 1)d + xd = b,

for every b in F2n . The equation can also be written

b = (x+ 1)d + xd

= Dn
(
(x+ 1) + x, x(x+ 1)

)
= Dn(1, x2 + x)
= RDn(x2 + x),

for any x in F2n . The following lemma is a direct consequence from this observation.

Lemma 17. The number of x in F2n (respectively F2n\F2 if we look at the restricted
spectrum) such that (x + 1)d + xd = b is equal to exactly twice the number of y in
F2n (respectively F∗2n) such that {

RDn(y) = b
Tr(y) = 0.

In other words, for a monomial Fd : x 7→ xd, we have

ω2k = |{b ∈ F2n , RDd(y) = b has k solutions with Tr(y) = 0}|.
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Actually, Blondeau et al. proved that when the monomial’s exponent is 2t − 1
for some t, ω2k is equal to the number of b such that System (4.3) has k solutions
([BCC11], Theorem 3):1 { ∑t−1

i=0 y
2i = by

Tr(y) = 0. (4.3)

Göloğu proved in [Göl12] that the reversed Dickson polynomial of degree 2t − 1
has the following expression:

RD2t−1(y) =
t−1∑
i=0

y2i−1.

So if we divide the first equation of System (4.3) by y, we see that the lemma found
by Blondeau et al. is equivalent to Lemma 17.

This connexion between differential properties and reversed Dickson polynomials
goes further. In [HMSY09], the following proposition was shown.

Proposition 1 (Proposition 4.3 from [HMSY09]). APN functions in F2n and F22n

are connected by the following relations.

• If xd is an APN function on F22n then RDd is a permutation polynomial on
F2n.

• If RDd is a permutation polynomial on F2n, then xd is APN on F2n.

• As a direct consequence, if xd is an APN function on F22n then xd is APN on
F2n.

The main consequence of this theorem is that finding an APN function in F22n

automatically implies finding an APN function in F2n . Note that the converse is
false. Let n = 7 and consider the monomial with exponent d = 2n−1 − 1 = 63.
x 7→ xd is APN in F2n as it is in the cyclotomic class of the inverse function and n
is odd. However, this function is locally differentially 14-uniform in F22n .

4.1.3 Connections with x2t+1 + x+ a

Recall the definitions of Lβ

Lβ : x 7→ x2t+1 + x+ β,

of F0
F0 = {l ∈ F2\F2,Tr(l) = 0}

and of the function Λ

Λ : l 7→
t∑
i=1

l2
i−1.

In Section 3.3, when n is odd and t = (n−1)/2, we proved the following results.
1We used this property in Section 3.2.3 when computing the spectrum of x 7→ x2t−1 for

t = (kn+ 1)/3.
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• Let S3 = {x ∈ F2n\F2, Lβ(x) = 0 and Lβ has 3 roots}. Then S3 is the image
of F0 by Λ.

• Let S1 = {x ∈ F2n\F2, Lβ(x) = 0 and Lβ has 1 roots}. Then S1 is the image
of F0 by l 7→ 1/Λ(l).

It is interesting to notice that Λ is almost another reversed Dickson polynomial:

Λ(l) = 1 +RD2t+1−1(l).

This implies two things.

• We can prove that Λ is an injection over F0 simply by observing that t+ 1 =
(n + 1)/2 is such that Gt+1 is locally differentially 2-uniform. Thus, it is
necessary that RD2t+1−1 is an injection over F0 and so must be Λ = 1 +
RD2t+1−1.

• This also mean that the roots v of Lβ when Lβ has three roots are such that
v = RD2t+1−1(y) + 1 and Tr(y) = 0. This also means that when Lβ has a
unique root v, then v =

(
1 +RD2t+1−1(y)

)−1 with Tr(y) = 0.

4.2 Other Interesting Spectra
All differential spectra of monomials Gt : x 7→ x2t−1 for n from 5 to 31 and for
t from 2 to n − 1 have been computed by Blondeau. All the locally differentially
6-uniform mappings in this table fit in one of the categories given in Table 4.1.
Furthermore, more simulations lead to the following conjecture.

Conjecture 3. For n ≥ 20, all differentially 6-uniform monomials are equivalent
to a function in the 2t−1 family. Furthermore, the corresponding value of t is given
by one of the formulas in Table 4.1.

t s = n− t+ 1 Condition Reference

3 n-2 - [BCC11]
n−1

2
n+3

2 n odd Theorem 11
kn+1

3
(k−3)n+2

3 3 does not divide n Theorem 7
n
3

2n
3 + 1 3 divides n Unknown

2n
3

n
3 + 1 3 divides n Unknown

Table 4.1. Observed locally differentially 6-uniform monomials Gt : x 7→ x2t−1 and
their symmetric.
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The spectra in the first category of Table 4.1 have been proved by Blondeau
et al. in [BCC11]. The spectra in the next two categories were extracted in the
previous chapter. However, the last two cases remain to be studied. Though of a
limited cryptographic interest due to their complete (i.e. non-restricted) differential
uniformity being equal to 2t or 2t − 2, finding out their spectrum would imply a
complete characterization of all families of locally differentially 6-uniform monomials
Gt.

We also recall the following conjecture concerning the cases t = n/3 and t =
n/3 + 1. It is a particular case of Conjecture 1 which was first stated by Blondeau
in [Blo11].

Conjecture 4. Let n be divided by 3. For t = n/3 and t = 2n/3 (respectively t =
n/3 + 1 and t = 2n/3 + 1), Gt : x 7→ x2t−1 is differentially 2t-uniform (respectively
(2t − 2)-uniform) and is locally differentially 6-uniform.

It is interesting to see that these exponents are connected. Indeed, 2n/3 + 1
is the symmetric of n/3 and 2n/3 is that of n/3 + 1. Therefore, only two distinct
restricted spectra are concerned by this conjecture.

Furthermore, if t = n/3 then 2t−1 is in the same cyclotomic class as 22t(2t−1) =
1− 22t, which corresponds to the multiplicative inverse of 22t− 1, the symmetric of
2t+1 − 1. Thus, if our conjecture is correct, Gt and 1/Gt have the same restricted
spectrum for this particular value of t.2

For particular values of n, some of the monomials with exponent 2t− 1 are also
differentially 6-uniform, although the corresponding values of t are not described in
Table 4.1.

• For n = 13, Gt for t = 4 (and its symmetric t = 10) has the same spectrum
as Gt for t = 3, t = (2n+ 1)/3 = 5, t = (n− 1)/2 = 6 and their symmetric.

• For n = 17, Gt for t = 4, t = 5 and t = 7 are differentially 6-uniform.
Furthermore, their spectra are identical with each other but also different
from all the proved ones. The restricted differential spectrum {ωti}i=0..6 of Gt
for t = 3, t = 4 and n = 17 is given by:

ω3
0 = 76484, ω3

2 = 49114, ω3
6 = 5474

ω4
0 = 75532, ω4

2 = 50542, ω4
6 = 4998.

• For n = 19, Gt for t = 8 (and its symmetric t = 12) is differentially 6-uniform;
its spectrum is different from all the proved ones. As above, we give the

2Note that this is wrong in the general case. For instance, for t = (n−1)/2 and n odd, we have
shown in Section 3.3 that Gt has the same spectrum as x 7→ xτ with τ = −2 − 2t+1, i.e. it has
the same spectrum as the function 1/Q where Q : x 7→ x2+2t+1

. The monomial Q is in the class
of x 7→ x2t+1, a quadratic function which is known (see Tables 2.2, 2.3 and 2.4) to be APN when
gcd(t, n) = 1.
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spectra for t = 3, t = 8 and n = 19:

ω3
0 = 306034, ω3

2 = 196309, ω3
6 = 21945

ω8
0 = 302310, ω8

2 = 201895, ω8
6 = 20083.

4.3 General Properties of the S-boxes Studied

4.3.1 Resilience Against Linear Attacks
From a cryptographic point of view, the lower the differential uniformity the better.
Furthermore, for a constant differential uniformity δ, the lower ωδ the better too.
The monomials we studied thus yield interesting properties which would allow a
cipher using them as S-boxes to resist a differential cryptanalysis. However, there
are other kinds of attacks.

The second main family of cryptanalysis is that of the linear attacks which
consist in extracting linear approximations of the ciphers. These attacks can be
prevented by using S-boxes with good non-linearity. Intuitively, the non-linearity
gives the distance between a function and the set of the linear functions. The higher
this quantity, the harder it is to find a linear approximation of the function.

To give a formal definition of the non-linearity, we first introduce the concept of
Walsh spectrum.

Definition 25. Let f : Fn2 → F2 be a Boolean function. The Walsh coefficient of f
at the point u of Fn2 is denoted F(f + φu) and is equal to

F(f + φu) =
∑
x∈Fn2

(−1)f(x)+u·x.

The Walsh spectrum of the function f is the set

{F(f + φu), u ∈ Fn2}.

Definition 26. Let f : Fn2 → F2 be a Boolean function. The non-linearity of f is
the Hamming distance between f and the set of the linear functions. It is denoted
NL(f) and is such that:

NL(f) = 2n−1 − 1
2L(f)

where
L(f) = max

u∈Fn2

(
|F(f + φu)|

)
.

The Walsh spectrum of a given function can be computed using SAGE [SJ05]
as it contains a module for Boolean functions. Using this tool, we computed the
Walsh spectra and the non-linearity of Gt for the values of t we are interested in,
namely t = 3, t = (nk + 1)/3, t = (n− 1)/2 and their symmetric.

The results we found were not very interesting in the sense that we were not
able to find any pattern which would have helped us to develop a theory. They are
given in Table 4.2 for n = 11 and n = 12.
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n type t L(Gt) Walsh spectrum

11 3 3 128 -128 -96 -64 -32 0 32 64 96 128

11 n+1
3 4 128 -128 -96 -64 -32 0 32 64 96 128

11 n−1
2 5 136 -120 -104 -88 -80 -72 -64 -56 -48 -40 -32 -24

-16 -8 0 8 16 24 32 40 48 56 64 72 80 88
112 136

11 n+3
2 7 128 -128 -112 -96 -80 -64 -48 -32 -16 0 16 32 48

64 80 96 128

11 2n+2
3 8 144 -144 -112 -96 -80 -64 -48 -32 -16 0 16 32 48

64 80 96 128

11 n− 2 9 128 -128 -112 -104 -88 -80 -72 -64 -56 -48 -40 -32
-24 -16 -8 0 8 16 24 32 40 48 56 64 72 80 88
96 104 112

12 3 3 176 -144 -80 -16 48 112 176

12 n
3 4 224 -160 -96 -32 32 96 224

12 n+3
3 5 192 -192 -176 -160 -144 -128 -112 -96 -80 -64 -48

-32 -16 0 16 32 48 64 80 96 112 128 144 160

12 2n
3 8 224 -160 -128 -96 -64 -32 0 32 64 96 128 224

12 2n+3
3 9 144 -144 -128 -96 -80 -64 -48 -32 -16 0 16 32 48

64 80 96 112 144

12 n− 2 10 224 -224 -208 -160 -136 -128 -120 -112 -96 -88 -80
-72 -64 -56 -48 -40 -32 -24 -16 -8 0 8 16 24
32 40 48 56 64 72 80 88 96 120 128 136 160

Table 4.2. The non linearity and the Walsh spectra of Gt for the values of t we
studied and n = 11, 12.

4.3.2 Resilience Against Algebraic Attacks
Another type of attack is the so-called algebraic attack which exploits particular
algebraic properties of the S-boxes to derive quadratic equations which must be
satisfied by a large set of variables. It was introduced by Courtois and Pieprzyk in
[CP02]. These variables can correspond to parts of a plaintext, of a ciphertext and
also to the internal state.

A key property to resist this cryptanalysis is the algebraic degree.

Definition 27. For monomials, the algebraic degree is equal to the Hamming weight
of the exponent. If Fd is the monomial x 7→ xd, we denote by deg(Fd) the algebraic
degree of Fd (i.e. the hamming weight of d).
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The higher this quantity, the better the resilience against algebraic attacks.
However, having an S-box with high algebraic degree is not enough: its inverse
must also have a high algebraic degree. The S-box S of the AES is based on the
function I : x 7→ x−1 in F28 due to its low differential uniformity. However, since
the algebraic degree of its inverse is 1 and in order to prevent such attacks, an affine
mapping is also used: S = L ◦ I (see the AES specification [DR98]).

The algebraic degree of Gt is simply equal to t. To compute the algebraic degree
of their inverse, we use Theorem 7 of [KS12]:

wt(G−1
t ) ≡ 1

t
mod n

where 1/t is the inverse of t modulo n. A table containing the algebraic degrees,
differential uniformities u(Gt), u(Gs) and local differential uniformities U(Gt,s)3 is
given Table 4.3 for all the values t studied in this Thesis as well as for their symmetric
and inverse.

t, s,
deg(G−1

t ) deg(G−1
s ) U(Gt,s) u(Gt) u(Gs) Spectrum

deg(Gt) deg(Gs)

2 n− 1 (∗, n+1
2 ) n− 1 2 2 (2,4) Quadratic

n+1
2

n+1
2 2 2 2 2 2 Inverse of x2t+1

n
2

n
2 + 1 * n+2

2 2 2n/2−2 2n/2 [BCC11]

3 n− 2 (∗, jn+1
3 ) n−1

2 6 6 (6,8) [BCC11]
kn+1

3
(3−k)n+2

3 3 (∗, 3) 6 6 6 Theorem 7
n−1

2
n+3

2 n− 2 (∗, jn+2
3 ) 6 (6,8) 6 Theorem 11

kn
3

(3−k)n+3
3 * (∗, jn+3

3 ) 6 2n/3 − 2 2n/3 Unknown

Table 4.3. Differential Uniformity and Algebraic degree of the function Gt(x) =
x2t−1, their symmetric Gs and their inverses G−1

t and G−1
s . We have 1 ≤ k, j ≤ 2.

4.3.3 Discussion about the Equivalence of the S-boxes Studied

In [CCZ98], Carlet, Charpin and Zinoviev introduced an equivalence relation for
Boolean functions which was then named CCZ equivalence.

Definition 28 (CCZ-equivalence [CCZ98]). Let F and F ′ be two functions from
F2n to F2m and let GF (respectively GF ′) be the graph of F (respectively F ′), i.e.

3Recall Theorem 4: Gt and Gs have the same restricted spectrum and thus the same local
differential uniformity
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{(x, F (x)), x ∈ F2n} (respectively {(x, F ′(x)), x ∈ F2n}). Then F and F ′ are called
CCZ-equivalent if there exists an affine permutation L of F2n×F2m such that GF ′ =
L(GF ).

A particular case of the CCZ equivalence is the extended affine equivalence, or
EA-equivalence, introduced in the same paper ([CCZ98]).

Definition 29 (EA equivalence [CCZ98]). Let F and F ′ be two functions from
F2n to F2m. F and F ′ are affine equivalent if there exist affine automorphisms
L : F2n → F2n and L′ : F2m → F2m as well as an affine function A : F2n → F2m

such that
F = L′ ◦ F ◦ L+A.

As we can see in Table 4.3, the algebraic degrees of the different functions are
related to each other. For instance, we have in some cases that deg(G−1

(n−1)/2) =
deg(G(jn+2)/3)). As the CCZ and EA equivalence preserve the algebraic degree and
since these functions also have the same differential uniformity (namely 6), it is
natural to ask the question of their equivalence.

However, both these equivalence relation are known to also preserve the Walsh
spectrum. Using the Walsh spectra extracted using a computer, we were able to
check that these are not equal for n in [7, 13] (see Tale 4.2 for the cases n = 7 and
n = 13). We thus claim that the functions we studied are independent from each
other with regards to these relations.

4.3.4 The x 7→ x2(n+3)/2−1 S-box

An other observation one can make from this table is that the monomial4 Gt for
t = (n + 3)/2 and n ≡ ±1 mod 6 is a bijection, is differentially 6-uniform, which
is low enough, has algebraic degree (n + 3)/2 which is high enough and and has
an inverse with algebraic degree (jn + 2)/3 for some j = 1, 2, which is also high
enough. These properties make it a potentially good candidate for use as an S-box
of a substitution-permutation network when the bit-length of the input and output
of the S-box is 6l ± 1 for some l. One could also use it in the round function of a
Feistel network in any field size because in this case, it is not necessary to have a
bijection.

For example, if we look at the cases where n = 7, 11 and 13. In all these cases,
n ≡ ±1 mod 6 so Gt is a bijection. The size of a look-up table to implement these
functions would contain respectively 128, 2048 and 8192 entries. While high in the
last case, this remains reasonable.

In these cases, Gt has the properties given in Table 4.4. The differential uni-
formities are not given since they are constant and equal to 6 (see Theorem 12).
For comparison, we also give the properties of the cubic function and the inverse

4It corresponds to the symmetric of t = (n− 1)/2 whose differential spectrum was extracted in
this Thesis.
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function, the latter being widely used (it is for instance at the core of the AES S-box
[DR98]).

n type deg(Gt) = t deg(G−1
t ) NL(Gt)

n+3
2 5 3 44

7 Cubic 2 5 56
Inverse 6 6 54
n+3

2 7 8 960
11 Cubic 3 4 992

Inverse 10 10 980
n+3

2 8 5 3936
13 Cubic 2 9 4032

Inverse 12 12 4006

Table 4.4. Properties of Gt : x 7→ x2t−1 for t = (n+ 3)/2 and n = 7, 11, 13.

4.4 Relations Between Exponents 2t − 1 and 2t+1 − 1

When trying to derive the differential spectrum of Gt and Gt+1 for t = n/3, we
observed an interesting link between the monomials Gt and Gt+1 which actually
holds for any value of t.

Recall that (x + 1)2t−1 + x2t−1 = b has δ(b) solutions and that P tb (x) = x2t +
bx2 + (b+ 1)x has δ(b) + 2 roots. Let x be some element of F2n and let b and c be
defined by

b = (x+ 1)2t−1 + x2t−1

c = (x+ 1)2t+1−1 + x2t+1−1.

We thus have that x is a root of both P tb and P t+1
c . This implies the following:

0 = P tb (x)2 + P t+1
c (x)

=
(
x2t + bx2 + (1 + b)x

)2 + x2t+1 + cx2 + (c+ 1)x
= x2t+1 + b2x4 + (b2 + 1)x2 + x2t+1 + cx2 + (c+ 1)x
= b2(x4 + (1 + b−2 + cb−2)x2 + b−2(c+ 1)x

)
= b2

(
x4 +

(
1 + c+ 1

b2
)
x2 + c+ 1

b2 x
)
.

Let γ = (c+ 1)/b2. Then if P tb (x) = P t+1
c (x) = 0, we have

0 = x4 + (1 + γ)x2 + γx

= (x2 + x)(x2 + x+ γ).
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If x 6= 0, 1, then it must hold that γ = x2 + x = y. Recall that P tb (x) = 0 if and
only if RD2t−1(y) = b; so we also have

RD2t−1(y) = b and RD2t+1−1(y) = c

=⇒ RD2t−1(y) +RD2t+1−1(y) = b+ c

=⇒
t−1∑
i=0

y2i−1 +
t∑
i=0

y2i−1 = b+ c

=⇒ y2t−1 = b+ c

=⇒ y2t−1 = b2 c+ 1
b2 + b+ 1

=⇒ y2t−1 = b2γ + b+ 1.

These observations have several consequences.

• γ = x2 + x implies that Tr(γ) = 0.

• γ = y and y2t−1 = b2γ + b + 1 implies that γ2t + b2γ2 + (b + 1)γ = 0. This
polynomial is the adjoined polynomial of P sb+1, denoted P s∗b+1. This polynomial
was introduced in [Blo11] and it was proven (Corollary 8.2) that {δs(b), b ∈
F2n\F2} = {δt(b), b ∈ F2n\F2}.





Conclusion

When designing a symmetric cryptographic primitive, be it a block cipher, a hash
function or a message authentication code (MAC), highly non-linear functions called
S-boxes are often used. Monomials over fields of characteristic 2 are usually chosen
due to their low implementation cost. In order for the primitive to be resilient
against differential cryptanalysis and affiliated attacks, the differential properties of
the S-box have to be taken into account.

In particular, the differential spectrum (and thus the differential uniformity) of
the function must match some criteria. In this Thesis, we extracted the differential
spectrum of four monomials, thus proving conjectures made by Blondeau in her PhD
Thesis. Some observations related to these proofs have also been made, connecting
for instance the differential spectrum with the image of a sub-field by Dickson
polynomials or linking the study of monomials with exponents 2t − 1 and 2t+1 − 1.

At last, we gave some conjectures. If they are correct, the classification of
differentially 6-uniform power functions is now complete and only two yet unproven
cases correspond to locally differentially 6-uniform functions.
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