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Abstract. We provide the differential spectra of differentially 6-uniform

functions among the family of power functions x 7→ x2
t−1 defined in F2n .

We show that the functions x 7→ x2
t−1 when t = n−1

2
, n+3

2
with odd

n and when t = kn+1
3
, (3−k)n+2

3
with kn ≡ 2 mod 3 have differential

spectra similar to the one of the function x 7→ x7 which belongs to the
same family. To provide the differential spectra for these functions, a
recent result of Helleseth and Kholosha regarding the number of roots

of polynomials of the form x2
t+1 + x+ a is used. A discussion regarding

the non-linearity and the algebraic degree of this family of exponents is
provided.
Keywords: Differential uniformity, Differential spectrum, Kloosterman

sum, Power function, Roots of trinomial, x 7→ x2
t−1, Dickson polynomial.

1 Introduction

Differential cryptanalysis is the first statistical attack proposed for breaking it-
erated block ciphers. Its publication [BS91] then gave rise to numerous works
which investigated the security offered by different types of functions regard-
ing differential attacks. This security is quantified by the so-called differential
uniformity of the Substitution box used in the cipher [NK93]. Most notably,
finding appropriate S-boxes which guarantee that the cipher using them resists
differential attacks has been a major topic for the last twenty years.

Power functions, i.e., monomial functions, form a class of suitable candi-
dates since they usually have a lower implementation cost in hardware. Also,
their particular algebraic structure makes the determination of their differential
properties easier. However, there are only few power functions with proved low
differential uniformity. Up to equivalence, there are two large families of such
functions: a subclass of the quadratic power functions (a.k.a. Gold functions) and
a subclass of the so-called Kasami functions. Both of these families contain some
permutations which are APN over F2n for odd n and differentially 4-uniform
for even n. The other known power functions with a low differential uniformity
correspond to “sporadic” cases in the sense that the corresponding exponents
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vary with n [HM11] and they do not belong to a large class: they correspond
to the exponents defined by Welch [Dob99b,CCD00], by Niho [Dob99a,HX01],
by Dobbertin [Dob00], by Bracken and Leander [BL10], and to the inverse func-
tion [Nyb93].

If the conjecture of [BCC10] concerning the list of monomials differentially
4-uniform is true, we can consider that the differential spectrum of all power
functions differentially 4-uniform have been provided in the past. For some cryp-
tographic applications, using a differentially 6-uniform power function instead
of a differentially 2- or 4-uniform does not drastically reduce the security of
the cipher. Power functions differentially 6-uniform can then present some cryp-
tographic interest in particular if non-linear and algebraic properties are also
relatively good for cryptographic applications.

Simulations of [BCC11] show that, for 17 ≤ n ≤ 31, all power functions dif-

ferentially 6-uniform belong to the family Gt(x) = x2
t−1. In [BCC11], properties

of the differential spectra of such functions were investigated. In particular, it
was shown that the differential spectrum of the power function Gt(x) = x2

t−1

and the one of the power function Gs(x) with s = n − t + 1 are related to
each other. In the same paper, the differential spectrum of the power functions
x 7→ x7 and x 7→ x2

n−2−1 on the field F2n is extracted.
In this paper, we give explicit formulas for the differential spectrum of Gt

when n is odd and t = n−1
2 , n+3

2 , or when kn ≡ 2 mod 3 (k = 1 or k = 2) and

t = kn+1
3 , (3−k)n+2

3 . All of these functions are differentially 6-or 8-uniform. We
show in particular that their differential spectrum, which can be expressed in
term of the Kloostermann sum, is similar to the one of the function G3(x) = x7.
While computing the differential spectrum of the function x7, an important
result of [BRS67] regarding the number of roots of the polynomial x3 + x + a
was used. In this paper, as the degree of the derivative depends on t, we use
a generalisation of this result published recently by Helleseth and Kholosha
[HK08,HK10]. Differential spectrum provided in Theorem 3 and 5 are proofs
of Conjecture 8.9 and 8.10 proposed in [Blo11]. A relation between derivative of
monomials and reversed Dickson polynomials is also mentioned in this paper.

The following of this paper is organised as follows. In Section 2, definitions
and results relevant to this work are recalled. While in Section 3, the functions Gt
with t = kn+1

3 and t = (3−k)n+2
3 are studied, Section 4 presents the differential

spectra of the functions Gt with t = n−1
2 and n+3

2 . In Section 5, a discussion
regarding the inverse of these functions Gt, their algebraic degree and their non-
linearity is given. Section 6 concludes this paper.

2 Preliminary

2.1 Functions over F2n and their derivatives

Any function F from F2n into F2n can be expressed uniquely as a univariate
polynomial in F2n [x] of degree at most 2n − 1. The algebraic degree of F , de-
noted by deg(F ), is the maximal Hamming weight of the 2-ary expansions of
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its exponents. In this paper, we identify a polynomial of F2n [x] with the corre-
sponding function over F2n .
In the following, we denote by Tr the absolute trace on F2n , i.e.,

Tr(β) = β + β2 + · · ·+ β2n−1

, β ∈ F2n .

In the whole paper, #E is the cardinality of any set E. To simplify the notation,
we also denote by F the set F2n\{0, 1}.

The resistance of a cipher to differential attacks and to its variants is quanti-
fied by some properties of the derivatives of its S(ubstitution)-box, in the sense
of the following definition.

Definition 1. Let F be a function from F2n into F2m . For any a ∈ F2n , the
derivative of F with respect to a is the function DaF from F2n into F2m defined
by

DaF (x) = F (x+ a) + F (x), ∀x ∈ F2n .

The resistance to differential cryptanalysis is related to the following quantities,
introduced by Nyberg and Knudsen [NK93,Nyb93].

Definition 2. Let F be a function from F2n into F2n . For any a and b in F2n ,
we denote

δ(a, b) = #{x ∈ F2n , DaF (x) = b}.

The differential uniformity of F is δ(F ) = maxa6=0, b∈F2n
δ(a, b). Functions for

which δ(F ) = 2 are said to be almost perfect non-linear (APN).

In this paper, we focus on the case where the S-box is a power function,
i.e., a monomial function on F2n . In other words, F (x) = xd over F2n . In the
case of such a power function, the differential properties can be analysed more
easily since, for all a 6= 0, δ(a, b) = δ(1, b/ad). Then, when F : x 7→ xd is a
monomial function, the differential characteristics of F are determined by the
values δ(b) = δ(1, b), b ∈ F2n . The differential spectrum of F can be defined as
follows.

Definition 3. Let F (x) = xd be a power function on F2n . We denote by ωi the
number of output differences b that occur i times:

ωi = #{b ∈ F2n | δ(b) = i}.

The differential spectrum of Fd is the set of the ωi: S = {ω0, ω2, ..., ωδ(F )}.

Obviously, the differential spectrum satisfies

δ(F )∑
i=0

ωi = 2n and

δ(F )∑
i=2

(i× ωi) = 2n, (1)

where ωi = 0 for odd i.
As explained in [HMAL09], derivatives of monomial Fd : x 7→ xd are linked

with the Dickson polynomial Dd (see [Dic96] for definition). We have (x+ 1)d +
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xd = Dd(1, x
2+x). In the following we denote by RDd the resulting one variable

polynomial RDd(x) = Dd(1, x).

As b = 0 and b = 1 correspond to the cyclotomic classes of order one,
they are often particular cases. In the following we say that a function F is
locally differentially λ-uniform if δ(b) ≤ λ for b 6= 0, 1. We define the restricted
differential spectrum as the sequence of values ω′i = #{b 6= 0, 1 | δ(b) = i}.

It is well-known that some basic transformations preserve S. In particular, if
F is a permutation, its inverse has the same differential spectrum as F .

2.2 General properties of x 7→ x2t−1

In [BCC11], different properties of the differential spectra of the functionsGt(x) =

x2
t−1, defined in the field F2n , were investigated. In particular it was shown that

the quantities δ(b) can be computed as follows:

δ(0) = 2gcd(t,n) − 2, δ(1) = 2gcd(t−1,n), and ∀b 6= 0, 1 δ(b) = Nb − 2, (2)

wereNb is the number of roots of the linear polynomial Pb(x) = x2
t

+bx2+(b+1)x
over F2n . The problem of determining the restricted differential spectrum of the
function Gt is then equivalent to the problem of finding the number of roots of
the linear polynomial Pb for b ∈ F . In particular ω′i 6= 0 if and only if i = 2r − 2
for some r. As 0 and 1 are simple roots of this polynomial, by setting y = x2 +x,
we obtain that Nb, b ∈ F , is equal to twice the number of roots of the following
system (see Theorem 3 of [BCC11]) in F∗2n :

Eb :

{
Q(y) = by

Tr(y) = 0
, Q(y) =

t−1∑
i=0

y2
i

. (3)

In [Göl12], the reversed Dickson polynomials when d = 2t − 1 are studied. As-
suming y 6= 0, we notice that RD2t−1(y) = Q(y)/y.

In [BCC11], it is shown that the restricted differential spectrum of the func-
tions Gt and Gs with s = n− t+ 1 are equal. Only the values δ(0) and δ(1) can
differ and are defined by (2). The function Gs is called the symmetric of Gt.

When n and t are co-prime, the function Gt is a permutation. In Theorem 7
of [KS12], the inverse of the exponent 2t− 1 is extracted. In the following, when
Gt is invertible, we denote by τ the inverse of 2t − 1 mod 2n − 1:

τ =

t−1−1 mod n∑
i=0

2ti mod 2n − 1. (4)

In [BCC11], a complete definition of the differential spectrum of the function
G3(x) = x7 is provided. As this function is differentially 6-uniform, and the
value of ω4 is determined only by δ(1), the complete differential spectrum can
be derived from ω6. Using (1), we have ω2 = 2n−1 − 3ω6 − 2ω4 and ω0 =
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2n−1 + 2ω6 + ω4. In Theorem 5 of [BCC11], it is shown that:

if n is odd, ω6 =
2n−2 + 1

6
− K(1)

8
, ω4 = 0,

if n is even, ω6 =
2n−2 − 4

6
+
K(1)

8
, ω4 = 1,

where K(1) is the Kloosterman sum defined by

K(1) =
∑
x∈F2n

(−1)Tr(x
−1+x), (5)

with the convention that (−1)Tr(x−1) = 1 for x = 0. To express the differential
spectrum of the function x7, a result from [Car79] which gives the number of
roots of the polynomial x3+x+a, was used. In this paper, results are derived us-
ing a generalisation of [HK08] concerning the number of roots of the polynomial

La(x) = x2
t+1 + x+ a in F2n .

Theorem 1. (Theorem 1 of [HK08]) Let t be a positive integer such that t ≤ n
and gcd(t, n) = 1. For any a ∈ F∗2n , the polynomial La(x) = x2

t+1 + x + a
has either none, one or three roots in F2n . Further La has exactly one zero
in F2n , namely x0, if and only if Tr

(
(1 + x−10 )τ

)
= 1. Let Mi = #{a ∈

F∗2n | La has i roots}.

For n odd, M0 =
2n + 1

3
, M1 = 2n−1 − 1, M3 =

2n−1 − 1

3
.

For n even, M0 =
2n − 1

3
, M1 = 2n−1, M3 =

2n−1 − 2

3
.

3 Functions x 7→ x2t−1 when t = (kn + 1)/3

In this section, we focus on field F2n where n is not a multiple of 3. We define
k = 1, 2 such that kn ≡ 2 mod 3. We are interested in the computation of the
differential spectra of the functions Gt and Gs with t and s as follows:

t =
kn+ 1

3
, s =

(3− k)n+ 2

3
.

Notice that k is chosen such that t and s are integer values. For this value of t,
the function Gt is a permutation (which is not always the case of the function
Gs). The inverse of 2t−1 modulo 2n−1, which we denote by τ , can be computed
easily from (4) as τ = 1 + 2t + 22t.

To derive the differential spectrum of these functions, we provide a different
formulation of (3). The following result will be used when rewriting the system.

Lemma 1. If n 6≡ 0 mod 3, then L1(x) = x + x2
t

+ x2
2t

has only one root
x = 0.
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Proof. This lemma is a direct consequence of Proposition 2 of [HK10]. This

polynomial has only one root zero if and only if L1(z) = z2
t+1+z+1 (z = x2

t−1)
is irreducible. Using the same notation as in the original paper, we notice that
if n 6≡ 0 mod 3, we have Cn(1) = 1 and Zn(1) = 1. As gcd(t, n) = 1, L1 is
irreducible. ut

Theorem 2. Let β = 1 + b−1. For b 6= 1 (if b = 0 then β = 1), the number of
solutions of Gt(x) + Gt(x + 1) = b is equal to twice the number of solutions of
this system: {

Lβ(v) = v2
t+1 + v + β = 0,

Tr(vτ ) = 0.
(6)

Proof. For the sake of simplification, we present the proof for b 6= 0. Let Q(y)

be the polynomial of (3). Summing Q(y)2
it

for i = 0, 1, 2 gives:

Q(y) +Q(y)2
t

+Q(y)2
2t

=

kn∑
i=0

y2
i

= k ×Tr(y) + y2
kn

= y.

From Lemma 1,
∑2
i=0(Q(y) + (by))2

it

= 0 if and only if Q(y) + by = 0. Thus,
(3) has the same number of solutions as:

(1 + b)y + (by)2
t

+ (by)2
2t

= 0 and Tr(y) = 0. (7)

Using the substitution z = by, the equation (1 + b)y+ (by)2
t

+ (by)2
2t

= 0 of (7)

is equivalent to Lβ(z) = 0 where β = 1 + b−1 and Lβ(z) = z2
2t

+ z2
t

+ βz. The
linear polynomial Lβ can be decomposed as

Lβ(z) = z ·
(
z(2

t−1)(2t+1) + z2
t−1 + β

)
= z · Lβ(z2

t−1),

where Lβ(x) = x2
t+1 + x + β. Thus, Lβ(z) = 0 and z 6= 0, 1 is equivalent to

Lβ(z2
t−1

) = 0. Furthermore, if it holds that Lβ(z) = 0 we have z2
2t

+z2
t

+z+y =
0. Thus, Tr(z) = Tr(y) so the trace condition of (7) is equivalent to Tr(z) = 0. If

we let v = z2
t−1, as we remove the trivial solution y = 0, (7) has exactly one more

root than (6) meaning the same number of solutions as Gt(x)+Gt(x+1)+b = 0.
ut

Using this theorem, we derive the differential spectrum of the function Gt.

Theorem 3. Let Gt ∈ F2n [x], with t = kn+1
3 and k = 1 or 2 depending of

n. The function Gt is differentially 6-uniform. Let K(1) as defined in (5), its
differential spectrum {ω0, ω2, ω4, ω6} is determined as follows:

if n ≡ ±1 mod 6, ω6 =
2n−2 + 1

6
− K(1)

8
, ω4 = 0,

if n ≡ ±2 mod 6, ω6 =
2n−2 − 4

6
+
K(1)

8
, ω4 = 1.

In both cases, ω2 = 2n−1 − 3ω6 − 2ω4 and ω0 = 2n−1 + 2ω6 + ω4.
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Proof. We first compute the value of δ(0) and δ(1) separately. As Gt is a permu-
tation we have δ(0) = 0. The value of δ(1) depends on the value of n modulo 6:
if n ≡ ±2 mod 6, δ(1) = 4 and ω4 = 1, if n ≡ ±1 mod 6, δ(1) = 2 and ω4 = 0.

According to Theorem 2, the differential spectrum of Gt can be computed by
studying the number of roots of (6). According to Theorem 1, as gcd(t, n) = 1,
Lβ can only have 0, 1 or 3 roots; meaning that for b 6= 1, δ(b) = 0, 2, 6. By
determining the number of β ∈ F∗2n (b 6= 1) such that (6) does not have any
roots, we can derive the complete differential spectrum (see. (1)). The number
of b such that Gt(x) + Gt(x + 1) = b is irreducible is equal to the number of β
such that the system has no solution and is denoted by ω0. We notice that:

– If Lβ has three roots, v1, v2 and v3, since vτ1 , v
τ
2 , v

τ
3 are roots of Lβ , we have

vτ1 +vτ2 +vτ3 = 0 and at least one of them is such that Tr(vτi ) = 0. Therefore
if Lβ has three roots, (6) has a least one solution.

– According to Theorem 1, v0 is the unique root of some Lβ if and only if
Tr
(
(1 + v−10 )τ

)
= 1.

From these observations, we deduce that (6) has no solution if and only if Lβ is
irreducible or if Lβ has one root v such that Tr(vτ ) 6= 0 and Tr

(
(1 + v−10 )τ

)
= 1.

As M0 corresponds to the number of β such that the system has no roots, we
have:

ω0 = M0 + #{v ∈ F ,Tr(vτ ) = 1,Tr
(
(1 + v−1)τ

)
= 1}.

Since x 7→ xτ is a permutation, using a similar method to [BCC11] by sepa-
rating with regards to the parity of n, we obtain that the set on the right is of
size 2n−2 + (−1)nK(1)/4. This allows us to conclude that

ω0 =
2n + (−1)n+1

3
+ 2n−2 + (−1)n

K(1)

4
.

The complete differential spectrum can be computed using (1). ut

Using the differential spectrum of the function Gt, the differential spectrum of

the symmetric function Gs, s = (3−k)n+2
3 can be derived easily (Theorem 4 of

[BCC11]). Notice that in that case Gs is a permutation if and only if n ≡ ±1
mod 6 (δ(0) = 0). If n ≡ ±2 mod 6, we have δ(0) = 2. In all cases we have
δ(1) = 2 and the function Gs is differentially 6-uniform.

4 Functions x 7→ x2t−1 when t = (n− 1)/2

In this section, we focus on field F2n with odd n. Theorem 9 of [BCC11] states

that the permutation Gt(x) = x2
t−1 with t = n−1

2 is locally differentially 6-
uniform. The symmetric of this function is the function Gs with s = n+3

2 . In
this section, we provide the complete differential spectrum of these functions.
Theorem 5 shows that their differential spectrum is similar to the one of the
function G3(x) = x7.
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In comparison with the previous section, a direct reduction of the problem to
a system similar to (6) does not lead easily to the derivation of the differential
spectrum.

As gcd(n−12 , n) = 1, the functions Gt : x 7→ x2
t−1 studied in this section

are permutations. As the differential spectrum of a function is equal to the
differential spectrum of its inverse, we study the differential spectrum of the
function Γt : x 7→ xτ with τ = −2 − 2t+1. In this section, a property of the
reversed Dickson polynomial when d = 2t+1− 1 is used to derive the differential
spectrum.

Theorem 4. Let b 6= 1 and let β = b1−2
t

. The number of roots of Γt(x)+Γt(x+
1) = b is equal to twice the number of roots of:{

Lβ(v) = v2
t+1 + v + β = 0,

Tr(v) = 1 + Tr(β).
(8)

Proof. We denote by δ(b) the number of roots of Γt(x) + Γt(x + 1) = b. By
rewriting and simplifying the equation (x + 1)τ + xτ = b, we obtain that the

number of roots of Πc(x) = x2
t

+x+1+c(x2+x)2
t+1, where c = b2

n−1

is δ(b)+2.
By setting y = x+x2, this number of roots is equal to twice the number of roots
of

χc(y) = cy2
t+1 +

t−1∑
i=0

y2
i

+ 1 = 0 and Tr(y) = 0,

which has as many solutions as:

y−2
t(
χc(y) + χc(y)2

t+1)
= c2

t+1

y2
t+1 + cy + 1 = 0 and Tr(cy2

t+1) = 1.

At last, if we let v = yc2−2
t+1

and β = c1−2
t+1

(= b1−2
t

), we obtain the result.

Notice that when v is a root of Lβ , the condition Tr(v2
t+1) = 1 can be written

as Tr(v) = 1 + Tr(β). ut

As before, Theorem 1 gives us the number of solutions of this system if we do not
take the condition over the trace into account. Before determining the differential
spectrum we introduce the following lemma.

Lemma 2. Let Λ(l) =
∑t
i=1 l

2i−1 be a function of F2n . The set of the x being
the unique roots of polynomial Lβ for some β is equal to the image of F0 = {x ∈
F | Tr(x) = 0} by the function l 7→ 1/Λ(l).

Proof. From [HK08], Lβ has 0, 1 or 3 roots. Let β be such that Lβ has 3 roots.
We denote by x one of the roots. As Lβ has 3 roots, it exists γ ∈ F such

that y = γx is also a root of Lβ . Thus, x2
t+1 + x = (γ · x)2

t+1 + γ · x. After

simplification, we obtain that x2
t

= (1 +γ)/(1 +γ2
t+1). By setting γ = α2t+1−2,

we have x2
t

= (α2 + α2t+1

)/(α+ α2). By setting l = α+ α2, we obtain:

Lβ(x) = Lβ(y) = 0, (x 6= y) ⇔ ∃l ∈ F0, x
2t = Λ(l) =

t∑
i=1

l2
i−1.

8



Therefore, {x | Lβ(x) = 0 and Lβ has 3 roots} = ImΛ(F0). By contradic-
tion we can prove that the inverse of Λ(l) is never in ImΛ(F0) for l ∈ F0 and as Λ
is injective, the conclusion comes from |ImΛ(F0)|= |Im1/Λ(F0)|= |F0|= |F|/2,
meaning that F = ImΛ(F0) ∪̇ Im1/Λ(F0). We can conclude by noticing that
F = {x | Lβ(x) = 0 and Lβ has 3 roots} ∪̇ {x | Lβ(x) = 0 and Lβ has 1 root}.

ut

Using the notation of [Göl12] we remark that Λ+ 1 corresponds to the reversed
Dickson polynomial RD2t+1−1. The fact that Λ is an injection can be seen by

observing that x2
t+1−1 is APN, which implies that RD2t+1−1 is an injection on

F0. When n ≡ 3 mod 4, from Proposition 4.3 of [HMAL09], we deduce that Λ
is even a permutation of F2n .

Theorem 5. Let n be odd and t = n−1
2 . The functions Gt and Γt are locally dif-

ferentially 6-uniform (differentially 6 or 8-uniform depending of n). Let K(1) be
as defined in (5), the differential spectrum {ω0, ω2, ω4, ω6, ω8} of these functions
is:

if n ≡ ±1 mod 6, ω8 = 0, ω6 =
2n−2 + 1

6
− K(1)

8
,

if n ≡ 3 mod 6, ω8 = 1, ω6 =
2n−2 − 8

6
− K(1)

8
.

In both cases, ω4 = 0, ω2 = 2n−1 − 3ω6 − 4ω8 and ω0 = 2n−1 + 2ω6 + 3ω8.

Proof. From Theorem 9 of [BCC11] we know that these functions are differ-
entially 6-uniform. If n ≡ 3 mod 6 we have δ(1) = 8 and ω8 = 1, otherwise
δ(1) = 2. In this theorem it is also proved that for b 6= 1 we have δ(b) ≤ 6. Like
in Section 3, to determine the differential spectrum, we compute the number ω0

of β such that (8) has no solutions. We notice that:

– If Lβ has three roots v1, v2, v3, we have vτ1 + vτ2 + vτ3 = 0. After some com-
putations we deduce that Tr(v1 + v2 + v3) = 1 + Tr(β), and that the system
has at least one solution.

– If v is the unique roots of Lβ , by Lemma 2 we know that ∃l ∈ F0 such that

v = 1/Λ(l). We can show that Tr(Λ(l)−1−2
t

) = 1 + Tr
(
(l · Λ(l))−1

)
.

From these observations, we deduce that (8) has no root if and only if Lβ is

irreducible or if Lβ has one root v such that Tr(v2
t+1) 6= 1. Hence, we have the

following expression:

ω0 = M0 + #{v ∈ F ,∃l ∈ F , v = 1/Λ(l),Tr(l) = 0,Tr
(
(lΛ(l))−1

)
= 1}.

If Tr(l) = 0 then Tr(l · Λ(l)) = 0 and λ : l 7→ l · Λ(l) is a permutation of F0

so by setting l′ = λ(l), we have

ω0 = M0 + #{l′ ∈ F ,Tr(l′) = 0,Tr(l′−1) = 1}.

We know from [BCC11] that the size of this set for odd n is 2n−2 −K(1)/4.

Thus, we know that ω0 is such that: ω0 =
2n + 1

3
+ 2n−2− K(1)

4
. The complete

differential spectrum can be computed using (1). ut
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Using the differential spectrum of the function Gt, the differential spectrum of

the symmetric function Gs with s = (n+3)
2 can be derived easily (Theorem 4 of

[BCC11]). Notice thatGs is a permutation if and only if n 6≡ 0 mod 3 (δ(0) = 0).
If n ≡ 0 mod 3, we have δ(0) = 2. In all cases δ(1) = 2. We conclude that the
function Gs is differentially 6-uniform.

5 Overview on the function x 7→ x2t−1

Among monomials with exponents 2t − 1 (t = 2, · · · , n − 1), several have good
differential properties, as for instance the Gold function G2(x) = x3 and the

inverse function Gn−2(x) = x2
n−2−1. In [BCC11] it is conjectured that only few

Gt are APN (equivalent to known APN). When n is odd, it has been proved
recently in [Göl12] that this conjecture is true and only G2(x) = x3 is APN.
Proving the case n even of Conjecture 1 of [BCC11] is still an open problem.
In [BCC11] and in this article, the differential uniformity and the differential
spectrum for different values of t have been extracted. These functions, resumed
in Table 1, are locally differentially 2-or 6-uniform meaning that for b 6= 0, 1
δ(b) ≤ 2 or 6. Other functions among the family x 7→ x2

t−1 can be proved locally
differentially 6-uniform. Nevertheless these functions present less cryptographic
interest since their differential uniformity increases with the dimension of the
field.

Theorem 6. Let Gt : F2n → F2n with n ≡ 0 mod 3 and t = n
3 ,

2n
3 ,

n
3 +

1, 2n
3 + 1. The function Gt is differentially 2t-uniform or (2t − 2)-uniform. For

b 6= 0, 1 we have δ(b) ≤ 6.

In Table 1, we give the list of functions Gt proved locally differentially 2-
or 6-uniform. As the algebraic degree is also a criteria when designing a block
cipher, in the same table, we resume the algebraic degree of the functions Gt
their symmetric Gs and, when they exist, their inverses. When the function is
not invertible the degree is denoted by ′∗′. The differential uniformity and the
permutation property depend of the value of n modulo 2, 3, 6 or 9. Restricted
differential uniformity is denoted by ∆ = max

b 6=0,1
δ(b). Algebraic degree of the

inverse of the function Gt has been computed using (4).
As actual block ciphers are designed using many iterations of the non-linear

layer, using a function differentially 6-uniform instead of a differentially 2-or
4-uniform does not influence directly the security of the cipher in regards to
differential cryptanalysis. Nevertheless, degree of the function or its inverse is
important to insure some security against algebraic attacks. For the locally differ-
entially 6-uniform ones, we notice that the algebraic degrees are related to each
other. For instance, in some cases, we have deg(G−1(n−1)/2) = deg(G(jn+2)/3). As

proved in this paper, all these functions have a similar differential spectrum and
the question of equivalence of these functions can be raised. As the CCZ and the
EA equivalence [CCZ98,Car10] preserve the Walsh spectrum, experiments have
been done to compute the non-linearity and the Walsh spectrum of the functions
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t, s,
deg(G−1

t ) deg(G−1
s ) ∆ δ(Gt) δ(Gs) Spectrum

deg(Gt) deg(Gs)

2 n− 1 (∗, n+1
2

) n− 1 2 2 (2,4) Gold/Inverse

n+1
2

n+1
2

2 2 2 2 2 Inverse of x2
t+1

n
2

n
2

+ 1 * n+2
2

2 2n/2−2 2n/2 [BCC11]

3 n− 2 (∗, jn+1
3

) n−1
2

6 6 (6,8) [BCC11]

kn+1
3

(3−k)n+2
3

3 (∗, 3) 6 6 6 Theorem 3

n−1
2

n+3
2

n− 2 (∗, jn+2
3

) 6 (6,8) 6 Theorem 5

kn
3

(3−k)n+3
3

* (∗, jn+3
3

) 6 2n/3 − 2 2n/3 Spectrum not proved

Table 1. Differential Uniformity and Algebraic degree of the function Gt(x) = x2
t−1,

their symmetric Gs and their inverses G−1
t and G−1

s . We have ∆ = max
b 6=0,1

δ(b) and

1 ≤ k, j ≤ 2.

Gt in F2n for n < 18. While for small n some functions have the same Walsh
spectrum, this property is not true anymore for larger n. Among the different
properties observed when computing the non-linearity, we notice that two sym-
metric functions Gt and Gs with related differential spectrum do not necessary
have the same non-linearity. These experimental results show that in general the
functions are not affine equivalent.

Notice that the function Gs with s = n+3
2 when n ≡ ±1 mod 6 has large

algebraic degree and its inverse too. As it is well known that if the degree of the
function is too small or too large the cipher can be sensitive to algebraic attacks,
this function can be a relatively good candidate for the Sbox of a block cipher.

Simulation over monomials Gt for (n ≤ 31) shows that almost all functions
Gt locally differentially 6-uniform are of a form in Table 1. From the simulation
of [BCC11], we have argument to conjecture that for n > 16, all power functions

differentially 6-uniform are of the form x 7→ x2
t−1. If both of these conjectures

are true, the classification of differentially 6-uniform power functions is almost
complete.

6 Conclusion

Studying the properties of power functions is of great interest for the security
of symmetric cryptographic primitives. As the differential spectrum of known
families of APN and differentially 4-uniform power functions have already been
studied, further investigations on power functions lead naturally to the study
of the differentially 6-uniform ones. In [BCC11], it was conjectured that a large

number of differentially 6-uniform power functions are such that Gt(x) = x2
t−1

in F2n [X]. While the differential spectrum when t = 3 and t = n−2 was already

11



presented in [BCC11], in this paper we present the differential spectrum of the

functions Gt for other values of t: t = n−1
2 , t = n+3

2 , t = kn+1
3 and t = (3−k)n+2

3
when t is an integer value and k = 1, 2. While these differential spectra are
similar to the one of the function x7, the algebraic degrees of some of these
functions and of their inverses can provide better candidate for the S-boxes of a
block cipher.
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